Extensions 1→N→G→Q→1 with N=C9 and Q=S3×C9

Direct product G=N×Q with N=C9 and Q=S3×C9
dρLabelID
S3×C92162S3xC9^2486,92

Semidirect products G=N:Q with N=C9 and Q=S3×C9
extensionφ:Q→Aut NdρLabelID
C9⋊(S3×C9) = C9⋊(S3×C9)φ: S3×C9/C32C6 ⊆ Aut C954C9:(S3xC9)486,138
C92(S3×C9) = S3×C9⋊C9φ: S3×C9/C3×S3C3 ⊆ Aut C9162C9:2(S3xC9)486,97
C93(S3×C9) = C9×C9⋊S3φ: S3×C9/C3×C9C2 ⊆ Aut C954C9:3(S3xC9)486,133

Non-split extensions G=N.Q with N=C9 and Q=S3×C9
extensionφ:Q→Aut NdρLabelID
C9.(S3×C9) = C27⋊C18φ: S3×C9/C32C6 ⊆ Aut C92718+C9.(S3xC9)486,31
C9.2(S3×C9) = S3×C27⋊C3φ: S3×C9/C3×S3C3 ⊆ Aut C9546C9.2(S3xC9)486,114
C9.3(S3×C9) = C9×D27φ: S3×C9/C3×C9C2 ⊆ Aut C9542C9.3(S3xC9)486,13
C9.4(S3×C9) = C273C18φ: S3×C9/C3×C9C2 ⊆ Aut C9546C9.4(S3xC9)486,15
C9.5(S3×C9) = C923S3φ: S3×C9/C3×C9C2 ⊆ Aut C9546C9.5(S3xC9)486,139
C9.6(S3×C9) = S3×C81central extension (φ=1)1622C9.6(S3xC9)486,33
C9.7(S3×C9) = S3×C3×C27central extension (φ=1)162C9.7(S3xC9)486,112

׿
×
𝔽