Copied to
clipboard

G = S3×C27⋊C3order 486 = 2·35

Direct product of S3 and C27⋊C3

direct product, metabelian, supersoluble, monomial

Aliases: S3×C27⋊C3, C33.2C18, (S3×C27)⋊C3, (S3×C9).C9, C272(C3×S3), (C3×C27)⋊7C6, C9.2(S3×C9), (C3×C9).2C18, (S3×C32).C9, C9.7(S3×C32), (S3×C9).3C32, (C32×C9).12C6, C32.10(S3×C9), C32.17(C3×C18), C3⋊(C2×C27⋊C3), (C3×C27⋊C3)⋊3C2, (S3×C3×C9).3C3, C3.10(S3×C3×C9), (C3×S3).5(C3×C9), (C3×C9).46(C3×S3), (C3×C9).38(C3×C6), SmallGroup(486,114)

Series: Derived Chief Lower central Upper central

C1C32 — S3×C27⋊C3
C1C3C32C3×C9C3×C27C3×C27⋊C3 — S3×C27⋊C3
C3C32 — S3×C27⋊C3
C1C9C27⋊C3

Generators and relations for S3×C27⋊C3
 G = < a,b,c,d | a3=b2=c27=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c10 >

Subgroups: 128 in 66 conjugacy classes, 33 normal (18 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C9, C32, C32, C18, C3×S3, C3×S3, C3×C6, C27, C27, C3×C9, C3×C9, C3×C9, C33, C54, S3×C9, S3×C9, C3×C18, S3×C32, C3×C27, C27⋊C3, C27⋊C3, C32×C9, S3×C27, C2×C27⋊C3, S3×C3×C9, C3×C27⋊C3, S3×C27⋊C3
Quotients: C1, C2, C3, S3, C6, C9, C32, C18, C3×S3, C3×C6, C3×C9, S3×C9, C3×C18, S3×C32, C27⋊C3, C2×C27⋊C3, S3×C3×C9, S3×C27⋊C3

Smallest permutation representation of S3×C27⋊C3
On 54 points
Generators in S54
(1 10 19)(2 11 20)(3 12 21)(4 13 22)(5 14 23)(6 15 24)(7 16 25)(8 17 26)(9 18 27)(28 46 37)(29 47 38)(30 48 39)(31 49 40)(32 50 41)(33 51 42)(34 52 43)(35 53 44)(36 54 45)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 50)(16 51)(17 52)(18 53)(19 54)(20 28)(21 29)(22 30)(23 31)(24 32)(25 33)(26 34)(27 35)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
(2 20 11)(3 12 21)(5 23 14)(6 15 24)(8 26 17)(9 18 27)(28 46 37)(29 38 47)(31 49 40)(32 41 50)(34 52 43)(35 44 53)

G:=sub<Sym(54)| (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,28)(21,29)(22,30)(23,31)(24,32)(25,33)(26,34)(27,35), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (2,20,11)(3,12,21)(5,23,14)(6,15,24)(8,26,17)(9,18,27)(28,46,37)(29,38,47)(31,49,40)(32,41,50)(34,52,43)(35,44,53)>;

G:=Group( (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,28)(21,29)(22,30)(23,31)(24,32)(25,33)(26,34)(27,35), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (2,20,11)(3,12,21)(5,23,14)(6,15,24)(8,26,17)(9,18,27)(28,46,37)(29,38,47)(31,49,40)(32,41,50)(34,52,43)(35,44,53) );

G=PermutationGroup([[(1,10,19),(2,11,20),(3,12,21),(4,13,22),(5,14,23),(6,15,24),(7,16,25),(8,17,26),(9,18,27),(28,46,37),(29,47,38),(30,48,39),(31,49,40),(32,50,41),(33,51,42),(34,52,43),(35,53,44),(36,54,45)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,50),(16,51),(17,52),(18,53),(19,54),(20,28),(21,29),(22,30),(23,31),(24,32),(25,33),(26,34),(27,35)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)], [(2,20,11),(3,12,21),(5,23,14),(6,15,24),(8,26,17),(9,18,27),(28,46,37),(29,38,47),(31,49,40),(32,41,50),(34,52,43),(35,44,53)]])

99 conjugacy classes

class 1  2 3A3B3C3D3E3F3G3H3I6A6B6C6D9A···9F9G···9L9M9N9O9P9Q9R9S9T18A···18F18G18H18I18J27A···27R27S···27AJ54A···54R
order1233333333366669···99···99999999918···181818181827···2727···2754···54
size1311222336633991···12···2333366663···399993···36···69···9

99 irreducible representations

dim111111111122222336
type+++
imageC1C2C3C3C6C6C9C9C18C18S3C3×S3C3×S3S3×C9S3×C9C27⋊C3C2×C27⋊C3S3×C27⋊C3
kernelS3×C27⋊C3C3×C27⋊C3S3×C27S3×C3×C9C3×C27C32×C9S3×C9S3×C32C3×C9C33C27⋊C3C27C3×C9C9C32S3C3C1
# reps116262126126162126666

Matrix representation of S3×C27⋊C3 in GL5(𝔽109)

1081000
1080000
00100
00010
00001
,
0108000
1080000
0010800
0001080
0000108
,
630000
063000
006136
004093
00110103
,
450000
045000
001024
0006343
000045

G:=sub<GL(5,GF(109))| [108,108,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,108,0,0,0,108,0,0,0,0,0,0,108,0,0,0,0,0,108,0,0,0,0,0,108],[63,0,0,0,0,0,63,0,0,0,0,0,6,4,11,0,0,1,0,0,0,0,36,93,103],[45,0,0,0,0,0,45,0,0,0,0,0,1,0,0,0,0,0,63,0,0,0,24,43,45] >;

S3×C27⋊C3 in GAP, Magma, Sage, TeX

S_3\times C_{27}\rtimes C_3
% in TeX

G:=Group("S3xC27:C3");
// GroupNames label

G:=SmallGroup(486,114);
// by ID

G=gap.SmallGroup(486,114);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,548,68,93,11669]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^27=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^10>;
// generators/relations

׿
×
𝔽