Extensions 1→N→G→Q→1 with N=He3 and Q=C3⋊S3

Direct product G=N×Q with N=He3 and Q=C3⋊S3
dρLabelID
C3⋊S3×He354C3:S3xHe3486,231

Semidirect products G=N:Q with N=He3 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
He31(C3⋊S3) = C345C6φ: C3⋊S3/C3S3 ⊆ Out He327He3:1(C3:S3)486,167
He32(C3⋊S3) = C347S3φ: C3⋊S3/C3S3 ⊆ Out He327He3:2(C3:S3)486,185
He33(C3⋊S3) = C3⋊(He3⋊S3)φ: C3⋊S3/C3S3 ⊆ Out He381He3:3(C3:S3)486,187
He34(C3⋊S3) = C3410C6φ: C3⋊S3/C32C2 ⊆ Out He381He3:4(C3:S3)486,242
He35(C3⋊S3) = C3413S3φ: C3⋊S3/C32C2 ⊆ Out He354He3:5(C3:S3)486,248
He36(C3⋊S3) = 3+ 1+43C2φ: C3⋊S3/C32C2 ⊆ Out He3279He3:6(C3:S3)486,249

Non-split extensions G=N.Q with N=He3 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
He3.1(C3⋊S3) = C324D9⋊C3φ: C3⋊S3/C3S3 ⊆ Out He381He3.1(C3:S3)486,170
He3.2(C3⋊S3) = He3⋊C33S3φ: C3⋊S3/C3S3 ⊆ Out He381He3.2(C3:S3)486,173
He3.3(C3⋊S3) = C3≀C3.S3φ: C3⋊S3/C3S3 ⊆ Out He3276+He3.3(C3:S3)486,175
He3.4(C3⋊S3) = He3.(C3⋊S3)φ: C3⋊S3/C3S3 ⊆ Out He381He3.4(C3:S3)486,186
He3.5(C3⋊S3) = C3≀C3⋊S3φ: C3⋊S3/C3S3 ⊆ Out He3276+He3.5(C3:S3)486,189
He3.6(C3⋊S3) = C9○He33S3φ: C3⋊S3/C32C2 ⊆ Out He381He3.6(C3:S3)486,245
He3.7(C3⋊S3) = 3+ 1+42C2φ: trivial image279He3.7(C3:S3)486,237

׿
×
𝔽