metabelian, supersoluble, monomial
Aliases: C3≀C3.S3, C9○He3⋊1S3, C9.(C32⋊C6), (C32×C9)⋊17C6, He3.C3⋊4S3, C9.He3⋊1C2, He3⋊C3⋊4S3, C32⋊4D9⋊8C3, He3.3(C3⋊S3), C33.67(C3×S3), C3.9(He3⋊4S3), (C3×C9).35(C3×S3), C32.19(C3×C3⋊S3), SmallGroup(486,175)
Series: Derived ►Chief ►Lower central ►Upper central
C32×C9 — C3≀C3.S3 |
Generators and relations for C3≀C3.S3
G = < a,b,c,d,e,f | a3=b3=c3=d3=f2=1, e3=b, ab=ba, cac-1=ab-1, ad=da, ae=ea, faf=a-1, bc=cb, bd=db, be=eb, fbf=b-1, dcd-1=ab-1c, ce=ec, cf=fc, de=ed, fdf=d-1, fef=b-1e2 >
Subgroups: 980 in 86 conjugacy classes, 19 normal (17 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C9, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, C3×C9, He3, He3, 3- 1+2, C33, C3×D9, C32⋊C6, C9⋊C6, C9⋊S3, C33⋊C2, C3≀C3, C3≀C3, He3.C3, He3.C3, He3⋊C3, C3.He3, C32×C9, C9○He3, C9○He3, C33⋊C6, He3.S3, He3.2S3, He3.4S3, C32⋊4D9, C9.He3, C3≀C3.S3
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, C32⋊C6, C3×C3⋊S3, He3⋊4S3, C3≀C3.S3
Character table of C3≀C3.S3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | 9L | 9M | 9N | 9O | 9P | 9Q | |
size | 1 | 81 | 2 | 6 | 6 | 6 | 6 | 9 | 9 | 18 | 18 | 81 | 81 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 6 |
ρ4 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ7 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1+√-3 | -1-√-3 | -1+√-3 | -1-√-3 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | ζ65 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | complex lifted from C3×S3 |
ρ12 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1-√-3 | -1+√-3 | -1-√-3 | -1+√-3 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | ζ6 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | complex lifted from C3×S3 |
ρ13 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1-√-3 | ζ65 | ζ6 | ζ65 | -1+√-3 | ζ6 | complex lifted from C3×S3 |
ρ14 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | ζ65 | ζ6 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | complex lifted from C3×S3 |
ρ15 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 0 | 0 | 2 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | ζ6 | -1+√-3 | ζ6 | ζ65 | ζ65 | -1-√-3 | complex lifted from C3×S3 |
ρ16 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 0 | 0 | 2 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | ζ65 | -1-√-3 | ζ65 | ζ6 | ζ6 | -1+√-3 | complex lifted from C3×S3 |
ρ17 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1+√-3 | ζ6 | ζ65 | ζ6 | -1-√-3 | ζ65 | complex lifted from C3×S3 |
ρ18 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | ζ6 | ζ65 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | complex lifted from C3×S3 |
ρ19 | 6 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 6 | 6 | 0 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ20 | 6 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | -3 | -3 | 0 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ21 | 6 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | -3 | -3 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ22 | 6 | 0 | -3 | 0 | -3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ23 | 6 | 0 | -3 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 6 | 0 | -3 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 6 | 0 | -3 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 6 | 0 | -3 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ27 | 6 | 0 | -3 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 6 | 0 | -3 | 0 | -3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ29 | 6 | 0 | -3 | 0 | -3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ30 | 6 | 0 | -3 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)
(1 22 13)(2 23 14)(3 24 15)(4 25 16)(5 26 17)(6 27 18)(7 19 10)(8 20 11)(9 21 12)
(19 22 25)(20 23 26)(21 24 27)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(2 9)(3 8)(4 7)(5 6)(10 16)(11 15)(12 14)(17 18)(19 25)(20 24)(21 23)(26 27)
G:=sub<Sym(27)| (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (1,22,13)(2,23,14)(3,24,15)(4,25,16)(5,26,17)(6,27,18)(7,19,10)(8,20,11)(9,21,12), (19,22,25)(20,23,26)(21,24,27), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,9)(3,8)(4,7)(5,6)(10,16)(11,15)(12,14)(17,18)(19,25)(20,24)(21,23)(26,27)>;
G:=Group( (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (1,22,13)(2,23,14)(3,24,15)(4,25,16)(5,26,17)(6,27,18)(7,19,10)(8,20,11)(9,21,12), (19,22,25)(20,23,26)(21,24,27), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,9)(3,8)(4,7)(5,6)(10,16)(11,15)(12,14)(17,18)(19,25)(20,24)(21,23)(26,27) );
G=PermutationGroup([[(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27)], [(1,22,13),(2,23,14),(3,24,15),(4,25,16),(5,26,17),(6,27,18),(7,19,10),(8,20,11),(9,21,12)], [(19,22,25),(20,23,26),(21,24,27)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(2,9),(3,8),(4,7),(5,6),(10,16),(11,15),(12,14),(17,18),(19,25),(20,24),(21,23),(26,27)]])
G:=TransitiveGroup(27,170);
Matrix representation of C3≀C3.S3 ►in GL6(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 18 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
18 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 18 | 18 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 18 | 18 |
17 | 12 | 0 | 0 | 0 | 0 |
7 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 17 | 12 | 0 | 0 |
0 | 0 | 7 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 12 |
0 | 0 | 0 | 0 | 7 | 5 |
1 | 0 | 0 | 0 | 0 | 0 |
18 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 18 | 18 |
G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,0,0,0,0,1,18,0,0,0,0,0,0,18,1,0,0,0,0,18,0],[0,18,0,0,0,0,1,18,0,0,0,0,0,0,0,18,0,0,0,0,1,18,0,0,0,0,0,0,0,18,0,0,0,0,1,18],[0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,0,0,0,0,1,18],[17,7,0,0,0,0,12,5,0,0,0,0,0,0,17,7,0,0,0,0,12,5,0,0,0,0,0,0,17,7,0,0,0,0,12,5],[1,18,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,18] >;
C3≀C3.S3 in GAP, Magma, Sage, TeX
C_3\wr C_3.S_3
% in TeX
G:=Group("C3wrC3.S3");
// GroupNames label
G:=SmallGroup(486,175);
// by ID
G=gap.SmallGroup(486,175);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,218,548,4755,453,3244,3250,11669]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^3=f^2=1,e^3=b,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,a*e=e*a,f*a*f=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,d*c*d^-1=a*b^-1*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f=d^-1,f*e*f=b^-1*e^2>;
// generators/relations
Export