Copied to
clipboard

G = C3≀C3.S3order 486 = 2·35

The non-split extension by C3≀C3 of S3 acting via S3/C3=C2

metabelian, supersoluble, monomial

Aliases: C3≀C3.S3, C9○He31S3, C9.(C32⋊C6), (C32×C9)⋊17C6, He3.C34S3, C9.He31C2, He3⋊C34S3, C324D98C3, He3.3(C3⋊S3), C33.67(C3×S3), C3.9(He34S3), (C3×C9).35(C3×S3), C32.19(C3×C3⋊S3), SmallGroup(486,175)

Series: Derived Chief Lower central Upper central

C1C32×C9 — C3≀C3.S3
C1C3C32C3×C9C32×C9C9.He3 — C3≀C3.S3
C32×C9 — C3≀C3.S3
C1

Generators and relations for C3≀C3.S3
 G = < a,b,c,d,e,f | a3=b3=c3=d3=f2=1, e3=b, ab=ba, cac-1=ab-1, ad=da, ae=ea, faf=a-1, bc=cb, bd=db, be=eb, fbf=b-1, dcd-1=ab-1c, ce=ec, cf=fc, de=ed, fdf=d-1, fef=b-1e2 >

Subgroups: 980 in 86 conjugacy classes, 19 normal (17 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C9, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, C3×C9, He3, He3, 3- 1+2, C33, C3×D9, C32⋊C6, C9⋊C6, C9⋊S3, C33⋊C2, C3≀C3, C3≀C3, He3.C3, He3.C3, He3⋊C3, C3.He3, C32×C9, C9○He3, C9○He3, C33⋊C6, He3.S3, He3.2S3, He3.4S3, C324D9, C9.He3, C3≀C3.S3
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, C32⋊C6, C3×C3⋊S3, He34S3, C3≀C3.S3

Character table of C3≀C3.S3

 class 123A3B3C3D3E3F3G3H3I6A6B9A9B9C9D9E9F9G9H9I9J9K9L9M9N9O9P9Q
 size 18126666991818818122266666666181818181818
ρ1111111111111111111111111111111    trivial
ρ21-1111111111-1-111111111111111111    linear of order 2
ρ31-111111ζ32ζ3ζ32ζ3ζ6ζ6511111111111ζ32ζ3ζ32ζ3ζ3ζ32    linear of order 6
ρ41-111111ζ3ζ32ζ3ζ32ζ65ζ611111111111ζ3ζ32ζ3ζ32ζ32ζ3    linear of order 6
ρ51111111ζ32ζ3ζ32ζ3ζ32ζ311111111111ζ32ζ3ζ32ζ3ζ3ζ32    linear of order 3
ρ61111111ζ3ζ32ζ3ζ32ζ3ζ3211111111111ζ3ζ32ζ3ζ32ζ32ζ3    linear of order 3
ρ7202222222-1-100-1-1-1-1-1-1-1-1-1-1-12-1-1-12-1    orthogonal lifted from S3
ρ82022-1-1-122-1-100-1-1-1-1-1-1222-1-1-1-122-1-1    orthogonal lifted from S3
ρ92022-1-1-122-1-100222-122-1-1-1-1-1-12-1-1-12    orthogonal lifted from S3
ρ102022-1-1-1222200-1-1-12-1-1-1-1-122-1-1-1-1-1-1    orthogonal lifted from S3
ρ112022-1-1-1-1+-3-1--3-1+-3-1--300-1-1-12-1-1-1-1-122ζ65ζ6ζ65ζ6ζ6ζ65    complex lifted from C3×S3
ρ122022-1-1-1-1--3-1+-3-1--3-1+-300-1-1-12-1-1-1-1-122ζ6ζ65ζ6ζ65ζ65ζ6    complex lifted from C3×S3
ρ132022222-1--3-1+-3ζ6ζ6500-1-1-1-1-1-1-1-1-1-1-1-1--3ζ65ζ6ζ65-1+-3ζ6    complex lifted from C3×S3
ρ142022-1-1-1-1+-3-1--3ζ65ζ600-1-1-1-1-1-1222-1-1ζ65ζ6-1+-3-1--3ζ6ζ65    complex lifted from C3×S3
ρ152022-1-1-1-1--3-1+-3ζ6ζ6500222-122-1-1-1-1-1ζ6-1+-3ζ6ζ65ζ65-1--3    complex lifted from C3×S3
ρ162022-1-1-1-1+-3-1--3ζ65ζ600222-122-1-1-1-1-1ζ65-1--3ζ65ζ6ζ6-1+-3    complex lifted from C3×S3
ρ172022222-1+-3-1--3ζ65ζ600-1-1-1-1-1-1-1-1-1-1-1-1+-3ζ6ζ65ζ6-1--3ζ65    complex lifted from C3×S3
ρ182022-1-1-1-1--3-1+-3ζ6ζ6500-1-1-1-1-1-1222-1-1ζ6ζ65-1--3-1+-3ζ65ζ6    complex lifted from C3×S3
ρ19606-30000000006660-3-300000000000    orthogonal lifted from C32⋊C6
ρ20606-3000000000-3-3-30-3600000000000    orthogonal lifted from C32⋊C6
ρ21606-3000000000-3-3-306-300000000000    orthogonal lifted from C32⋊C6
ρ2260-30-30300000095+3ζ9498+3ζ997+3ζ92ζ95+2ζ9492900ζ989794+2ζ92ζ989492+2ζ99594929989492998+2ζ979492000000    orthogonal faithful
ρ2360-3003-300000095+3ζ9498+3ζ997+3ζ92989492900ζ989492+2ζ99594929ζ989794+2ζ9298+2ζ979492ζ95+2ζ94929000000    orthogonal faithful
ρ2460-303-3000000098+3ζ997+3ζ9295+3ζ94ζ95+2ζ9492900ζ989492+2ζ99594929ζ989794+2ζ92989492998+2ζ979492000000    orthogonal faithful
ρ2560-303-3000000097+3ζ9295+3ζ9498+3ζ9989492900ζ989794+2ζ92ζ989492+2ζ9959492998+2ζ979492ζ95+2ζ94929000000    orthogonal faithful
ρ2660-3003-300000097+3ζ9295+3ζ9498+3ζ9ζ95+2ζ94929009594929ζ989794+2ζ92ζ989492+2ζ9989492998+2ζ979492000000    orthogonal faithful
ρ2760-303-3000000095+3ζ9498+3ζ997+3ζ9298+2ζ979492009594929ζ989794+2ζ92ζ989492+2ζ9ζ95+2ζ949299894929000000    orthogonal faithful
ρ2860-30-30300000097+3ζ9295+3ζ9498+3ζ998+2ζ97949200ζ989492+2ζ99594929ζ989794+2ζ92ζ95+2ζ949299894929000000    orthogonal faithful
ρ2960-30-30300000098+3ζ997+3ζ9295+3ζ949894929009594929ζ989794+2ζ92ζ989492+2ζ998+2ζ979492ζ95+2ζ94929000000    orthogonal faithful
ρ3060-3003-300000098+3ζ997+3ζ9295+3ζ9498+2ζ97949200ζ989794+2ζ92ζ989492+2ζ99594929ζ95+2ζ949299894929000000    orthogonal faithful

Permutation representations of C3≀C3.S3
On 27 points - transitive group 27T170
Generators in S27
(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)
(1 22 13)(2 23 14)(3 24 15)(4 25 16)(5 26 17)(6 27 18)(7 19 10)(8 20 11)(9 21 12)
(19 22 25)(20 23 26)(21 24 27)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(2 9)(3 8)(4 7)(5 6)(10 16)(11 15)(12 14)(17 18)(19 25)(20 24)(21 23)(26 27)

G:=sub<Sym(27)| (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (1,22,13)(2,23,14)(3,24,15)(4,25,16)(5,26,17)(6,27,18)(7,19,10)(8,20,11)(9,21,12), (19,22,25)(20,23,26)(21,24,27), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,9)(3,8)(4,7)(5,6)(10,16)(11,15)(12,14)(17,18)(19,25)(20,24)(21,23)(26,27)>;

G:=Group( (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (1,22,13)(2,23,14)(3,24,15)(4,25,16)(5,26,17)(6,27,18)(7,19,10)(8,20,11)(9,21,12), (19,22,25)(20,23,26)(21,24,27), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,9)(3,8)(4,7)(5,6)(10,16)(11,15)(12,14)(17,18)(19,25)(20,24)(21,23)(26,27) );

G=PermutationGroup([[(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27)], [(1,22,13),(2,23,14),(3,24,15),(4,25,16),(5,26,17),(6,27,18),(7,19,10),(8,20,11),(9,21,12)], [(19,22,25),(20,23,26),(21,24,27)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(2,9),(3,8),(4,7),(5,6),(10,16),(11,15),(12,14),(17,18),(19,25),(20,24),(21,23),(26,27)]])

G:=TransitiveGroup(27,170);

Matrix representation of C3≀C3.S3 in GL6(𝔽19)

100000
010000
000100
00181800
00001818
000010
,
010000
18180000
000100
00181800
000001
00001818
,
001000
000100
000010
000001
100000
010000
,
100000
010000
001000
000100
000001
00001818
,
17120000
750000
00171200
007500
00001712
000075
,
100000
18180000
001000
00181800
000010
00001818

G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,0,0,0,0,1,18,0,0,0,0,0,0,18,1,0,0,0,0,18,0],[0,18,0,0,0,0,1,18,0,0,0,0,0,0,0,18,0,0,0,0,1,18,0,0,0,0,0,0,0,18,0,0,0,0,1,18],[0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,0,0,0,0,1,18],[17,7,0,0,0,0,12,5,0,0,0,0,0,0,17,7,0,0,0,0,12,5,0,0,0,0,0,0,17,7,0,0,0,0,12,5],[1,18,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,18] >;

C3≀C3.S3 in GAP, Magma, Sage, TeX

C_3\wr C_3.S_3
% in TeX

G:=Group("C3wrC3.S3");
// GroupNames label

G:=SmallGroup(486,175);
// by ID

G=gap.SmallGroup(486,175);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,218,548,4755,453,3244,3250,11669]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^3=f^2=1,e^3=b,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,a*e=e*a,f*a*f=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,d*c*d^-1=a*b^-1*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f=d^-1,f*e*f=b^-1*e^2>;
// generators/relations

Export

Character table of C3≀C3.S3 in TeX

׿
×
𝔽