Extensions 1→N→G→Q→1 with N=He3 and Q=C3xC6

Direct product G=NxQ with N=He3 and Q=C3xC6
dρLabelID
C3xC6xHe3162C3xC6xHe3486,251

Semidirect products G=N:Q with N=He3 and Q=C3xC6
extensionφ:Q→Out NdρLabelID
He3:(C3xC6) = C3xC3wrS3φ: C3xC6/C3C6 ⊆ Out He327He3:(C3xC6)486,115
He3:2(C3xC6) = C6xC3wrC3φ: C3xC6/C6C3 ⊆ Out He354He3:2(C3xC6)486,210
He3:3(C3xC6) = C6xHe3:C3φ: C3xC6/C6C3 ⊆ Out He3162He3:3(C3xC6)486,212
He3:4(C3xC6) = C2xHe3:C32φ: C3xC6/C6C3 ⊆ Out He3549He3:4(C3xC6)486,217
He3:5(C3xC6) = C32xC32:C6φ: C3xC6/C32C2 ⊆ Out He354He3:5(C3xC6)486,222
He3:6(C3xC6) = C32xHe3:C2φ: C3xC6/C32C2 ⊆ Out He381He3:6(C3xC6)486,230
He3:7(C3xC6) = C2x3+ 1+4φ: trivial image549He3:7(C3xC6)486,254

Non-split extensions G=N.Q with N=He3 and Q=C3xC6
extensionφ:Q→Out NdρLabelID
He3.1(C3xC6) = C3xHe3.C6φ: C3xC6/C3C6 ⊆ Out He381He3.1(C3xC6)486,118
He3.2(C3xC6) = C3xHe3.2C6φ: C3xC6/C3C6 ⊆ Out He381He3.2(C3xC6)486,121
He3.3(C3xC6) = C3wrS3:3C3φ: C3xC6/C3C6 ⊆ Out He3273He3.3(C3xC6)486,125
He3.4(C3xC6) = C3wrC3:C6φ: C3xC6/C3C6 ⊆ Out He3279He3.4(C3xC6)486,126
He3.5(C3xC6) = He3.C3:C6φ: C3xC6/C3C6 ⊆ Out He3279He3.5(C3xC6)486,128
He3.6(C3xC6) = He3.(C3xC6)φ: C3xC6/C3C6 ⊆ Out He3279He3.6(C3xC6)486,130
He3.7(C3xC6) = C3wrC3.C6φ: C3xC6/C3C6 ⊆ Out He3279He3.7(C3xC6)486,132
He3.8(C3xC6) = C6xHe3.C3φ: C3xC6/C6C3 ⊆ Out He3162He3.8(C3xC6)486,211
He3.9(C3xC6) = C2xC9.He3φ: C3xC6/C6C3 ⊆ Out He3543He3.9(C3xC6)486,214
He3.10(C3xC6) = C2xC33:C32φ: C3xC6/C6C3 ⊆ Out He3549He3.10(C3xC6)486,215
He3.11(C3xC6) = C2xHe3.C32φ: C3xC6/C6C3 ⊆ Out He3549He3.11(C3xC6)486,216
He3.12(C3xC6) = C2xC9.2He3φ: C3xC6/C6C3 ⊆ Out He3549He3.12(C3xC6)486,219
He3.13(C3xC6) = C3xHe3.4C6φ: C3xC6/C32C2 ⊆ Out He381He3.13(C3xC6)486,235
He3.14(C3xC6) = 3+ 1+4:2C2φ: C3xC6/C32C2 ⊆ Out He3279He3.14(C3xC6)486,237
He3.15(C3xC6) = 3- 1+4:2C2φ: C3xC6/C32C2 ⊆ Out He3279He3.15(C3xC6)486,239
He3.16(C3xC6) = C6xC9oHe3φ: trivial image162He3.16(C3xC6)486,253
He3.17(C3xC6) = C2x3- 1+4φ: trivial image549He3.17(C3xC6)486,255

׿
x
:
Z
F
o
wr
Q
<