Copied to
clipboard

G = C3≀S33C3order 486 = 2·35

The semidirect product of C3≀S3 and C3 acting through Inn(C3≀S3)

non-abelian, supersoluble, monomial

Aliases: C3≀S33C3, C3≀C3.2C6, C9○He32C6, (C32×C9)⋊24S3, He3.3(C3×C6), C9.He33C2, He3.C310C6, C9.9(C32⋊C6), C33.37(C3×S3), He3⋊C310C6, He3.4C61C3, He3.2C63C3, He3.C63C3, C32.4(S3×C32), He3⋊C2.2C32, (C3×C9).25(C3×S3), C3.18(C3×C32⋊C6), SmallGroup(486,125)

Series: Derived Chief Lower central Upper central

C1C3He3 — C3≀S33C3
C1C3C32He3C9○He3C9.He3 — C3≀S33C3
He3 — C3≀S33C3
C1C9

Generators and relations for C3≀S33C3
 G = < a,b,c,d,e | a3=b3=c3=d6=e3=1, eae-1=ab=ba, cac-1=ab-1, dad-1=a-1b, bc=cb, bd=db, be=eb, dcd-1=a-1c-1, ece-1=ab-1c, ede-1=bcd >

Subgroups: 306 in 77 conjugacy classes, 21 normal (all characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C32, C32, C18, C3×S3, C3×C6, C3×C9, C3×C9, He3, He3, 3- 1+2, C33, S3×C9, He3⋊C2, C3×C18, S3×C32, C3≀C3, C3≀C3, He3.C3, He3.C3, He3⋊C3, C3.He3, C32×C9, C9○He3, C9○He3, C3≀S3, He3.C6, He3.2C6, S3×C3×C9, He3.4C6, C9.He3, C3≀S33C3
Quotients: C1, C2, C3, S3, C6, C32, C3×S3, C3×C6, C32⋊C6, S3×C32, C3×C32⋊C6, C3≀S33C3

Permutation representations of C3≀S33C3
On 27 points - transitive group 27T149
Generators in S27
(1 3 9)(2 8 6)(4 7 5)(11 13 15)(17 19 21)(22 24 26)
(1 9 3)(2 6 8)(4 5 7)(10 12 14)(11 13 15)(16 18 20)(17 19 21)(22 24 26)(23 25 27)
(1 26 23)(2 17 20)(3 24 27)(4 15 12)(5 11 14)(6 19 16)(7 13 10)(8 21 18)(9 22 25)
(10 11 12 13 14 15)(16 17 18 19 20 21)(22 23 24 25 26 27)
(1 14 19)(2 23 15)(3 12 17)(4 16 26)(5 18 22)(6 25 11)(7 20 24)(8 27 13)(9 10 21)

G:=sub<Sym(27)| (1,3,9)(2,8,6)(4,7,5)(11,13,15)(17,19,21)(22,24,26), (1,9,3)(2,6,8)(4,5,7)(10,12,14)(11,13,15)(16,18,20)(17,19,21)(22,24,26)(23,25,27), (1,26,23)(2,17,20)(3,24,27)(4,15,12)(5,11,14)(6,19,16)(7,13,10)(8,21,18)(9,22,25), (10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27), (1,14,19)(2,23,15)(3,12,17)(4,16,26)(5,18,22)(6,25,11)(7,20,24)(8,27,13)(9,10,21)>;

G:=Group( (1,3,9)(2,8,6)(4,7,5)(11,13,15)(17,19,21)(22,24,26), (1,9,3)(2,6,8)(4,5,7)(10,12,14)(11,13,15)(16,18,20)(17,19,21)(22,24,26)(23,25,27), (1,26,23)(2,17,20)(3,24,27)(4,15,12)(5,11,14)(6,19,16)(7,13,10)(8,21,18)(9,22,25), (10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27), (1,14,19)(2,23,15)(3,12,17)(4,16,26)(5,18,22)(6,25,11)(7,20,24)(8,27,13)(9,10,21) );

G=PermutationGroup([[(1,3,9),(2,8,6),(4,7,5),(11,13,15),(17,19,21),(22,24,26)], [(1,9,3),(2,6,8),(4,5,7),(10,12,14),(11,13,15),(16,18,20),(17,19,21),(22,24,26),(23,25,27)], [(1,26,23),(2,17,20),(3,24,27),(4,15,12),(5,11,14),(6,19,16),(7,13,10),(8,21,18),(9,22,25)], [(10,11,12,13,14,15),(16,17,18,19,20,21),(22,23,24,25,26,27)], [(1,14,19),(2,23,15),(3,12,17),(4,16,26),(5,18,22),(6,25,11),(7,20,24),(8,27,13),(9,10,21)]])

G:=TransitiveGroup(27,149);

66 conjugacy classes

class 1  2 3A3B3C···3H3I3J3K3L6A···6H9A···9F9G···9R9S9T9U···9Z18A···18R
order12333···333336···69···99···9999···918···18
size19113···361818189···91···13···36618···189···9

66 irreducible representations

dim1111111111222366
type++++
imageC1C2C3C3C3C3C6C6C6C6S3C3×S3C3×S3C3≀S33C3C32⋊C6C3×C32⋊C6
kernelC3≀S33C3C9.He3C3≀S3He3.C6He3.2C6He3.4C6C3≀C3He3.C3He3⋊C3C9○He3C32×C9C3×C9C33C1C9C3
# reps11222222221623612

Matrix representation of C3≀S33C3 in GL3(𝔽19) generated by

1108
071
001
,
700
070
007
,
0180
1180
061
,
1811
080
0911
,
3514
3014
1016
G:=sub<GL(3,GF(19))| [11,0,0,0,7,0,8,1,1],[7,0,0,0,7,0,0,0,7],[0,1,0,18,18,6,0,0,1],[1,0,0,8,8,9,11,0,11],[3,3,1,5,0,0,14,14,16] >;

C3≀S33C3 in GAP, Magma, Sage, TeX

C_3\wr S_3\rtimes_3C_3
% in TeX

G:=Group("C3wrS3:3C3");
// GroupNames label

G:=SmallGroup(486,125);
// by ID

G=gap.SmallGroup(486,125);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,500,867,873,8104,382]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^6=e^3=1,e*a*e^-1=a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1*b,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^-1*c^-1,e*c*e^-1=a*b^-1*c,e*d*e^-1=b*c*d>;
// generators/relations

׿
×
𝔽