Copied to
clipboard

G = C25⋊F5order 500 = 22·53

1st semidirect product of C25 and F5 acting via F5/C5=C4

metabelian, supersoluble, monomial, A-group

Aliases: C251F5, C52.4F5, (C5×C25)⋊5C4, C51(C25⋊C4), C25⋊D5.1C2, C5.(C5⋊F5), SmallGroup(500,22)

Series: Derived Chief Lower central Upper central

C1C5×C25 — C25⋊F5
C1C5C52C5×C25C25⋊D5 — C25⋊F5
C5×C25 — C25⋊F5
C1

Generators and relations for C25⋊F5
 G = < a,b,c | a25=b5=c4=1, ab=ba, cac-1=a18, cbc-1=b3 >

125C2
125C4
25D5
25D5
25D5
25D5
25D5
25D5
25F5
25F5
25F5
25F5
25F5
25F5
5D25
5C5⋊D5
5D25
5D25
5D25
5D25
5C25⋊C4
5C25⋊C4
5C25⋊C4
5C5⋊F5
5C25⋊C4
5C25⋊C4

Smallest permutation representation of C25⋊F5
On 125 points
Generators in S125
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125)
(1 84 57 28 106)(2 85 58 29 107)(3 86 59 30 108)(4 87 60 31 109)(5 88 61 32 110)(6 89 62 33 111)(7 90 63 34 112)(8 91 64 35 113)(9 92 65 36 114)(10 93 66 37 115)(11 94 67 38 116)(12 95 68 39 117)(13 96 69 40 118)(14 97 70 41 119)(15 98 71 42 120)(16 99 72 43 121)(17 100 73 44 122)(18 76 74 45 123)(19 77 75 46 124)(20 78 51 47 125)(21 79 52 48 101)(22 80 53 49 102)(23 81 54 50 103)(24 82 55 26 104)(25 83 56 27 105)
(2 8 25 19)(3 15 24 12)(4 22 23 5)(6 11 21 16)(7 18 20 9)(10 14 17 13)(26 95 59 120)(27 77 58 113)(28 84 57 106)(29 91 56 124)(30 98 55 117)(31 80 54 110)(32 87 53 103)(33 94 52 121)(34 76 51 114)(35 83 75 107)(36 90 74 125)(37 97 73 118)(38 79 72 111)(39 86 71 104)(40 93 70 122)(41 100 69 115)(42 82 68 108)(43 89 67 101)(44 96 66 119)(45 78 65 112)(46 85 64 105)(47 92 63 123)(48 99 62 116)(49 81 61 109)(50 88 60 102)

G:=sub<Sym(125)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125), (1,84,57,28,106)(2,85,58,29,107)(3,86,59,30,108)(4,87,60,31,109)(5,88,61,32,110)(6,89,62,33,111)(7,90,63,34,112)(8,91,64,35,113)(9,92,65,36,114)(10,93,66,37,115)(11,94,67,38,116)(12,95,68,39,117)(13,96,69,40,118)(14,97,70,41,119)(15,98,71,42,120)(16,99,72,43,121)(17,100,73,44,122)(18,76,74,45,123)(19,77,75,46,124)(20,78,51,47,125)(21,79,52,48,101)(22,80,53,49,102)(23,81,54,50,103)(24,82,55,26,104)(25,83,56,27,105), (2,8,25,19)(3,15,24,12)(4,22,23,5)(6,11,21,16)(7,18,20,9)(10,14,17,13)(26,95,59,120)(27,77,58,113)(28,84,57,106)(29,91,56,124)(30,98,55,117)(31,80,54,110)(32,87,53,103)(33,94,52,121)(34,76,51,114)(35,83,75,107)(36,90,74,125)(37,97,73,118)(38,79,72,111)(39,86,71,104)(40,93,70,122)(41,100,69,115)(42,82,68,108)(43,89,67,101)(44,96,66,119)(45,78,65,112)(46,85,64,105)(47,92,63,123)(48,99,62,116)(49,81,61,109)(50,88,60,102)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125), (1,84,57,28,106)(2,85,58,29,107)(3,86,59,30,108)(4,87,60,31,109)(5,88,61,32,110)(6,89,62,33,111)(7,90,63,34,112)(8,91,64,35,113)(9,92,65,36,114)(10,93,66,37,115)(11,94,67,38,116)(12,95,68,39,117)(13,96,69,40,118)(14,97,70,41,119)(15,98,71,42,120)(16,99,72,43,121)(17,100,73,44,122)(18,76,74,45,123)(19,77,75,46,124)(20,78,51,47,125)(21,79,52,48,101)(22,80,53,49,102)(23,81,54,50,103)(24,82,55,26,104)(25,83,56,27,105), (2,8,25,19)(3,15,24,12)(4,22,23,5)(6,11,21,16)(7,18,20,9)(10,14,17,13)(26,95,59,120)(27,77,58,113)(28,84,57,106)(29,91,56,124)(30,98,55,117)(31,80,54,110)(32,87,53,103)(33,94,52,121)(34,76,51,114)(35,83,75,107)(36,90,74,125)(37,97,73,118)(38,79,72,111)(39,86,71,104)(40,93,70,122)(41,100,69,115)(42,82,68,108)(43,89,67,101)(44,96,66,119)(45,78,65,112)(46,85,64,105)(47,92,63,123)(48,99,62,116)(49,81,61,109)(50,88,60,102) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125)], [(1,84,57,28,106),(2,85,58,29,107),(3,86,59,30,108),(4,87,60,31,109),(5,88,61,32,110),(6,89,62,33,111),(7,90,63,34,112),(8,91,64,35,113),(9,92,65,36,114),(10,93,66,37,115),(11,94,67,38,116),(12,95,68,39,117),(13,96,69,40,118),(14,97,70,41,119),(15,98,71,42,120),(16,99,72,43,121),(17,100,73,44,122),(18,76,74,45,123),(19,77,75,46,124),(20,78,51,47,125),(21,79,52,48,101),(22,80,53,49,102),(23,81,54,50,103),(24,82,55,26,104),(25,83,56,27,105)], [(2,8,25,19),(3,15,24,12),(4,22,23,5),(6,11,21,16),(7,18,20,9),(10,14,17,13),(26,95,59,120),(27,77,58,113),(28,84,57,106),(29,91,56,124),(30,98,55,117),(31,80,54,110),(32,87,53,103),(33,94,52,121),(34,76,51,114),(35,83,75,107),(36,90,74,125),(37,97,73,118),(38,79,72,111),(39,86,71,104),(40,93,70,122),(41,100,69,115),(42,82,68,108),(43,89,67,101),(44,96,66,119),(45,78,65,112),(46,85,64,105),(47,92,63,123),(48,99,62,116),(49,81,61,109),(50,88,60,102)]])

35 conjugacy classes

class 1  2 4A4B5A···5F25A···25Y
order12445···525···25
size11251251254···44···4

35 irreducible representations

dim111444
type+++++
imageC1C2C4F5F5C25⋊C4
kernelC25⋊F5C25⋊D5C5×C25C25C52C5
# reps1125125

Matrix representation of C25⋊F5 in GL8(𝔽101)

1001001001000000
10000000
01000000
00100000
00007847032
000069467338
00006331835
000066289774
,
1001001001000000
10000000
01000000
00100000
00001000
00000100
00000010
00000001
,
001001000000
100100000000
11100000
010010000000
00001000
00000001
00000100
0000100100100100

G:=sub<GL(8,GF(101))| [100,1,0,0,0,0,0,0,100,0,1,0,0,0,0,0,100,0,0,1,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,0,78,69,63,66,0,0,0,0,4,46,31,28,0,0,0,0,70,73,8,97,0,0,0,0,32,38,35,74],[100,1,0,0,0,0,0,0,100,0,1,0,0,0,0,0,100,0,0,1,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,100,1,0,0,0,0,0,0,100,1,100,0,0,0,0,100,0,1,100,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,0,1,0,0,100,0,0,0,0,0,0,1,100,0,0,0,0,0,0,0,100,0,0,0,0,0,1,0,100] >;

C25⋊F5 in GAP, Magma, Sage, TeX

C_{25}\rtimes F_5
% in TeX

G:=Group("C25:F5");
// GroupNames label

G:=SmallGroup(500,22);
// by ID

G=gap.SmallGroup(500,22);
# by ID

G:=PCGroup([5,-2,-2,-5,-5,-5,10,1622,3127,387,803,808,5004,5009]);
// Polycyclic

G:=Group<a,b,c|a^25=b^5=c^4=1,a*b=b*a,c*a*c^-1=a^18,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C25⋊F5 in TeX

׿
×
𝔽