metacyclic, supersoluble, monomial, Z-group, 7-hyperelementary
Aliases: C71⋊C7, SmallGroup(497,1)
Series: Derived ►Chief ►Lower central ►Upper central
C71 — C71⋊C7 |
Generators and relations for C71⋊C7
G = < a,b | a71=b7=1, bab-1=a30 >
Character table of C71⋊C7
class | 1 | 7A | 7B | 7C | 7D | 7E | 7F | 71A | 71B | 71C | 71D | 71E | 71F | 71G | 71H | 71I | 71J | |
size | 1 | 71 | 71 | 71 | 71 | 71 | 71 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ74 | ζ76 | ζ72 | ζ75 | ζ7 | ζ73 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 7 |
ρ3 | 1 | ζ72 | ζ73 | ζ7 | ζ76 | ζ74 | ζ75 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 7 |
ρ4 | 1 | ζ73 | ζ7 | ζ75 | ζ72 | ζ76 | ζ74 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 7 |
ρ5 | 1 | ζ76 | ζ72 | ζ73 | ζ74 | ζ75 | ζ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 7 |
ρ6 | 1 | ζ75 | ζ74 | ζ76 | ζ7 | ζ73 | ζ72 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 7 |
ρ7 | 1 | ζ7 | ζ75 | ζ74 | ζ73 | ζ72 | ζ76 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 7 |
ρ8 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ7143+ζ7129+ζ7127+ζ7118+ζ7112+ζ718+ζ715 | ζ7164+ζ7160+ζ7140+ζ7125+ζ7119+ζ713+ζ712 | ζ7158+ζ7154+ζ7136+ζ7124+ζ7116+ζ7115+ζ7110 | ζ7157+ζ7150+ζ7149+ζ7138+ζ719+ζ716+ζ714 | ζ7161+ζ7156+ζ7155+ζ7147+ζ7135+ζ7117+ζ7113 | ζ7170+ζ7151+ζ7141+ζ7139+ζ7134+ζ7126+ζ7123 | ζ7169+ζ7168+ζ7152+ζ7146+ζ7131+ζ7111+ζ717 | ζ7167+ζ7165+ζ7162+ζ7133+ζ7122+ζ7121+ζ7114 | ζ7148+ζ7145+ζ7137+ζ7132+ζ7130+ζ7120+ζ71 | ζ7166+ζ7163+ζ7159+ζ7153+ζ7144+ζ7142+ζ7128 | complex faithful |
ρ9 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ7164+ζ7160+ζ7140+ζ7125+ζ7119+ζ713+ζ712 | ζ7158+ζ7154+ζ7136+ζ7124+ζ7116+ζ7115+ζ7110 | ζ7157+ζ7150+ζ7149+ζ7138+ζ719+ζ716+ζ714 | ζ7148+ζ7145+ζ7137+ζ7132+ζ7130+ζ7120+ζ71 | ζ7167+ζ7165+ζ7162+ζ7133+ζ7122+ζ7121+ζ7114 | ζ7166+ζ7163+ζ7159+ζ7153+ζ7144+ζ7142+ζ7128 | ζ7161+ζ7156+ζ7155+ζ7147+ζ7135+ζ7117+ζ7113 | ζ7170+ζ7151+ζ7141+ζ7139+ζ7134+ζ7126+ζ7123 | ζ7143+ζ7129+ζ7127+ζ7118+ζ7112+ζ718+ζ715 | ζ7169+ζ7168+ζ7152+ζ7146+ζ7131+ζ7111+ζ717 | complex faithful |
ρ10 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ7167+ζ7165+ζ7162+ζ7133+ζ7122+ζ7121+ζ7114 | ζ7170+ζ7151+ζ7141+ζ7139+ζ7134+ζ7126+ζ7123 | ζ7166+ζ7163+ζ7159+ζ7153+ζ7144+ζ7142+ζ7128 | ζ7169+ζ7168+ζ7152+ζ7146+ζ7131+ζ7111+ζ717 | ζ7143+ζ7129+ζ7127+ζ7118+ζ7112+ζ718+ζ715 | ζ7158+ζ7154+ζ7136+ζ7124+ζ7116+ζ7115+ζ7110 | ζ7148+ζ7145+ζ7137+ζ7132+ζ7130+ζ7120+ζ71 | ζ7164+ζ7160+ζ7140+ζ7125+ζ7119+ζ713+ζ712 | ζ7161+ζ7156+ζ7155+ζ7147+ζ7135+ζ7117+ζ7113 | ζ7157+ζ7150+ζ7149+ζ7138+ζ719+ζ716+ζ714 | complex faithful |
ρ11 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ7157+ζ7150+ζ7149+ζ7138+ζ719+ζ716+ζ714 | ζ7148+ζ7145+ζ7137+ζ7132+ζ7130+ζ7120+ζ71 | ζ7143+ζ7129+ζ7127+ζ7118+ζ7112+ζ718+ζ715 | ζ7164+ζ7160+ζ7140+ζ7125+ζ7119+ζ713+ζ712 | ζ7166+ζ7163+ζ7159+ζ7153+ζ7144+ζ7142+ζ7128 | ζ7161+ζ7156+ζ7155+ζ7147+ζ7135+ζ7117+ζ7113 | ζ7170+ζ7151+ζ7141+ζ7139+ζ7134+ζ7126+ζ7123 | ζ7169+ζ7168+ζ7152+ζ7146+ζ7131+ζ7111+ζ717 | ζ7158+ζ7154+ζ7136+ζ7124+ζ7116+ζ7115+ζ7110 | ζ7167+ζ7165+ζ7162+ζ7133+ζ7122+ζ7121+ζ7114 | complex faithful |
ρ12 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ7148+ζ7145+ζ7137+ζ7132+ζ7130+ζ7120+ζ71 | ζ7143+ζ7129+ζ7127+ζ7118+ζ7112+ζ718+ζ715 | ζ7164+ζ7160+ζ7140+ζ7125+ζ7119+ζ713+ζ712 | ζ7158+ζ7154+ζ7136+ζ7124+ζ7116+ζ7115+ζ7110 | ζ7169+ζ7168+ζ7152+ζ7146+ζ7131+ζ7111+ζ717 | ζ7167+ζ7165+ζ7162+ζ7133+ζ7122+ζ7121+ζ7114 | ζ7166+ζ7163+ζ7159+ζ7153+ζ7144+ζ7142+ζ7128 | ζ7161+ζ7156+ζ7155+ζ7147+ζ7135+ζ7117+ζ7113 | ζ7157+ζ7150+ζ7149+ζ7138+ζ719+ζ716+ζ714 | ζ7170+ζ7151+ζ7141+ζ7139+ζ7134+ζ7126+ζ7123 | complex faithful |
ρ13 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ7169+ζ7168+ζ7152+ζ7146+ζ7131+ζ7111+ζ717 | ζ7161+ζ7156+ζ7155+ζ7147+ζ7135+ζ7117+ζ7113 | ζ7167+ζ7165+ζ7162+ζ7133+ζ7122+ζ7121+ζ7114 | ζ7170+ζ7151+ζ7141+ζ7139+ζ7134+ζ7126+ζ7123 | ζ7157+ζ7150+ζ7149+ζ7138+ζ719+ζ716+ζ714 | ζ7143+ζ7129+ζ7127+ζ7118+ζ7112+ζ718+ζ715 | ζ7158+ζ7154+ζ7136+ζ7124+ζ7116+ζ7115+ζ7110 | ζ7148+ζ7145+ζ7137+ζ7132+ζ7130+ζ7120+ζ71 | ζ7166+ζ7163+ζ7159+ζ7153+ζ7144+ζ7142+ζ7128 | ζ7164+ζ7160+ζ7140+ζ7125+ζ7119+ζ713+ζ712 | complex faithful |
ρ14 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ7161+ζ7156+ζ7155+ζ7147+ζ7135+ζ7117+ζ7113 | ζ7167+ζ7165+ζ7162+ζ7133+ζ7122+ζ7121+ζ7114 | ζ7170+ζ7151+ζ7141+ζ7139+ζ7134+ζ7126+ζ7123 | ζ7166+ζ7163+ζ7159+ζ7153+ζ7144+ζ7142+ζ7128 | ζ7148+ζ7145+ζ7137+ζ7132+ζ7130+ζ7120+ζ71 | ζ7164+ζ7160+ζ7140+ζ7125+ζ7119+ζ713+ζ712 | ζ7157+ζ7150+ζ7149+ζ7138+ζ719+ζ716+ζ714 | ζ7143+ζ7129+ζ7127+ζ7118+ζ7112+ζ718+ζ715 | ζ7169+ζ7168+ζ7152+ζ7146+ζ7131+ζ7111+ζ717 | ζ7158+ζ7154+ζ7136+ζ7124+ζ7116+ζ7115+ζ7110 | complex faithful |
ρ15 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ7158+ζ7154+ζ7136+ζ7124+ζ7116+ζ7115+ζ7110 | ζ7157+ζ7150+ζ7149+ζ7138+ζ719+ζ716+ζ714 | ζ7148+ζ7145+ζ7137+ζ7132+ζ7130+ζ7120+ζ71 | ζ7143+ζ7129+ζ7127+ζ7118+ζ7112+ζ718+ζ715 | ζ7170+ζ7151+ζ7141+ζ7139+ζ7134+ζ7126+ζ7123 | ζ7169+ζ7168+ζ7152+ζ7146+ζ7131+ζ7111+ζ717 | ζ7167+ζ7165+ζ7162+ζ7133+ζ7122+ζ7121+ζ7114 | ζ7166+ζ7163+ζ7159+ζ7153+ζ7144+ζ7142+ζ7128 | ζ7164+ζ7160+ζ7140+ζ7125+ζ7119+ζ713+ζ712 | ζ7161+ζ7156+ζ7155+ζ7147+ζ7135+ζ7117+ζ7113 | complex faithful |
ρ16 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ7166+ζ7163+ζ7159+ζ7153+ζ7144+ζ7142+ζ7128 | ζ7169+ζ7168+ζ7152+ζ7146+ζ7131+ζ7111+ζ717 | ζ7161+ζ7156+ζ7155+ζ7147+ζ7135+ζ7117+ζ7113 | ζ7167+ζ7165+ζ7162+ζ7133+ζ7122+ζ7121+ζ7114 | ζ7158+ζ7154+ζ7136+ζ7124+ζ7116+ζ7115+ζ7110 | ζ7148+ζ7145+ζ7137+ζ7132+ζ7130+ζ7120+ζ71 | ζ7164+ζ7160+ζ7140+ζ7125+ζ7119+ζ713+ζ712 | ζ7157+ζ7150+ζ7149+ζ7138+ζ719+ζ716+ζ714 | ζ7170+ζ7151+ζ7141+ζ7139+ζ7134+ζ7126+ζ7123 | ζ7143+ζ7129+ζ7127+ζ7118+ζ7112+ζ718+ζ715 | complex faithful |
ρ17 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ7170+ζ7151+ζ7141+ζ7139+ζ7134+ζ7126+ζ7123 | ζ7166+ζ7163+ζ7159+ζ7153+ζ7144+ζ7142+ζ7128 | ζ7169+ζ7168+ζ7152+ζ7146+ζ7131+ζ7111+ζ717 | ζ7161+ζ7156+ζ7155+ζ7147+ζ7135+ζ7117+ζ7113 | ζ7164+ζ7160+ζ7140+ζ7125+ζ7119+ζ713+ζ712 | ζ7157+ζ7150+ζ7149+ζ7138+ζ719+ζ716+ζ714 | ζ7143+ζ7129+ζ7127+ζ7118+ζ7112+ζ718+ζ715 | ζ7158+ζ7154+ζ7136+ζ7124+ζ7116+ζ7115+ζ7110 | ζ7167+ζ7165+ζ7162+ζ7133+ζ7122+ζ7121+ζ7114 | ζ7148+ζ7145+ζ7137+ζ7132+ζ7130+ζ7120+ζ71 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71)
(2 46 38 33 21 49 31)(3 20 4 65 41 26 61)(5 39 7 58 10 51 50)(6 13 44 19 30 28 9)(8 32 47 12 70 53 69)(11 25 16 37 59 55 17)(14 18 56 62 48 57 36)(15 63 22 23 68 34 66)(24 42 71 27 35 40 52)(29 54 43 45 64 67 60)
G:=sub<Sym(71)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71), (2,46,38,33,21,49,31)(3,20,4,65,41,26,61)(5,39,7,58,10,51,50)(6,13,44,19,30,28,9)(8,32,47,12,70,53,69)(11,25,16,37,59,55,17)(14,18,56,62,48,57,36)(15,63,22,23,68,34,66)(24,42,71,27,35,40,52)(29,54,43,45,64,67,60)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71), (2,46,38,33,21,49,31)(3,20,4,65,41,26,61)(5,39,7,58,10,51,50)(6,13,44,19,30,28,9)(8,32,47,12,70,53,69)(11,25,16,37,59,55,17)(14,18,56,62,48,57,36)(15,63,22,23,68,34,66)(24,42,71,27,35,40,52)(29,54,43,45,64,67,60) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71)], [(2,46,38,33,21,49,31),(3,20,4,65,41,26,61),(5,39,7,58,10,51,50),(6,13,44,19,30,28,9),(8,32,47,12,70,53,69),(11,25,16,37,59,55,17),(14,18,56,62,48,57,36),(15,63,22,23,68,34,66),(24,42,71,27,35,40,52),(29,54,43,45,64,67,60)]])
Matrix representation of C71⋊C7 ►in GL7(𝔽6959)
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 918 | 1422 | 1623 | 1011 | 4788 | 1992 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1801 | 4396 | 2987 | 2575 | 4866 | 2466 | 2647 |
3677 | 897 | 2942 | 1850 | 3150 | 6355 | 3225 |
3172 | 6045 | 2076 | 6690 | 4614 | 1063 | 1445 |
3374 | 5673 | 686 | 4677 | 3044 | 2036 | 2980 |
1992 | 5399 | 1229 | 5462 | 4384 | 4877 | 6222 |
4245 | 1543 | 6585 | 3350 | 659 | 820 | 5886 |
G:=sub<GL(7,GF(6959))| [0,0,0,0,0,0,1,1,0,0,0,0,0,918,0,1,0,0,0,0,1422,0,0,1,0,0,0,1623,0,0,0,1,0,0,1011,0,0,0,0,1,0,4788,0,0,0,0,0,1,1992],[1,1801,3677,3172,3374,1992,4245,0,4396,897,6045,5673,5399,1543,0,2987,2942,2076,686,1229,6585,0,2575,1850,6690,4677,5462,3350,0,4866,3150,4614,3044,4384,659,0,2466,6355,1063,2036,4877,820,0,2647,3225,1445,2980,6222,5886] >;
C71⋊C7 in GAP, Magma, Sage, TeX
C_{71}\rtimes C_7
% in TeX
G:=Group("C71:C7");
// GroupNames label
G:=SmallGroup(497,1);
// by ID
G=gap.SmallGroup(497,1);
# by ID
G:=PCGroup([2,-7,-71,1261]);
// Polycyclic
G:=Group<a,b|a^71=b^7=1,b*a*b^-1=a^30>;
// generators/relations
Export
Subgroup lattice of C71⋊C7 in TeX
Character table of C71⋊C7 in TeX