Extensions 1→N→G→Q→1 with N=C2 and Q=D4⋊C4

Direct product G=N×Q with N=C2 and Q=D4⋊C4
dρLabelID
C2×D4⋊C432C2xD4:C464,95


Non-split extensions G=N.Q with N=C2 and Q=D4⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(D4⋊C4) = D4⋊C8central extension (φ=1)32C2.1(D4:C4)64,6
C2.2(D4⋊C4) = C22.4Q16central extension (φ=1)64C2.2(D4:C4)64,21
C2.3(D4⋊C4) = C22.SD16central stem extension (φ=1)16C2.3(D4:C4)64,8
C2.4(D4⋊C4) = C4.D8central stem extension (φ=1)32C2.4(D4:C4)64,12
C2.5(D4⋊C4) = C4.10D8central stem extension (φ=1)64C2.5(D4:C4)64,13
C2.6(D4⋊C4) = C2.D16central stem extension (φ=1)32C2.6(D4:C4)64,38
C2.7(D4⋊C4) = C2.Q32central stem extension (φ=1)64C2.7(D4:C4)64,39
C2.8(D4⋊C4) = D8.C4central stem extension (φ=1)322C2.8(D4:C4)64,40
C2.9(D4⋊C4) = D82C4central stem extension (φ=1)164C2.9(D4:C4)64,41
C2.10(D4⋊C4) = M5(2)⋊C2central stem extension (φ=1)164+C2.10(D4:C4)64,42
C2.11(D4⋊C4) = C8.17D4central stem extension (φ=1)324-C2.11(D4:C4)64,43

׿
×
𝔽