p-group, metabelian, nilpotent (class 4), monomial
Aliases: D8⋊2C4, Q16⋊2C4, C8.22D4, C4.8SD16, C22.3D8, M5(2)⋊5C2, C8.1(C2×C4), C4.Q8⋊1C2, C4○D8.2C2, (C2×C4).10D4, (C2×C8).9C22, C4.4(C22⋊C4), C2.9(D4⋊C4), SmallGroup(64,41)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D8⋊2C4
G = < a,b,c | a8=b2=c4=1, bab=a-1, cac-1=a3, cbc-1=a5b >
Character table of D8⋊2C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 16A | 16B | 16C | 16D | |
size | 1 | 1 | 2 | 8 | 2 | 2 | 8 | 8 | 8 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | -i | i | -1 | -1 | -1 | 1 | i | -i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | 1 | -1 | i | -i | -1 | -1 | -1 | 1 | -i | i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | i | -i | 1 | -1 | -1 | 1 | i | -i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | -i | i | 1 | -1 | -1 | 1 | -i | i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ14 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ15 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ16 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)
(2 4)(3 7)(6 8)(9 10 13 14)(11 16 15 12)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9), (2,4)(3,7)(6,8)(9,10,13,14)(11,16,15,12)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9), (2,4)(3,7)(6,8)(9,10,13,14)(11,16,15,12) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)], [(2,4),(3,7),(6,8),(9,10,13,14),(11,16,15,12)]])
G:=TransitiveGroup(16,156);
D8⋊2C4 is a maximal subgroup of
C23.13D8 Q32⋊C4 D8⋊D4 D8.D4 D10.D8
D8p⋊C4: D16⋊C4 D24⋊8C4 D24⋊2C4 D40⋊14C4 D40⋊8C4 D40⋊1C4 D56⋊8C4 D56⋊2C4 ...
C4p.SD16: D8⋊3Q8 D8.2Q8 D8⋊2Dic3 D8⋊2Dic5 D8⋊2Dic7 ...
D8⋊2C4 is a maximal quotient of
D8⋊C8 Q16⋊C8 C22.SD32 C23.32D8 C8.C42 D10.D8 D40⋊1C4
C8.D4p: C8.30D8 D24⋊8C4 D40⋊14C4 D56⋊8C4 ...
C4p.SD16: C8.16Q16 D24⋊2C4 D8⋊2Dic3 D40⋊8C4 D8⋊2Dic5 D56⋊2C4 D8⋊2Dic7 ...
Matrix representation of D8⋊2C4 ►in GL4(𝔽3) generated by
2 | 0 | 0 | 2 |
0 | 0 | 1 | 0 |
0 | 1 | 1 | 0 |
2 | 0 | 0 | 0 |
0 | 0 | 2 | 0 |
1 | 0 | 0 | 1 |
2 | 0 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 2 |
0 | 0 | 2 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 2 |
G:=sub<GL(4,GF(3))| [2,0,0,2,0,0,1,0,0,1,1,0,2,0,0,0],[0,1,2,0,0,0,0,1,2,0,0,1,0,1,0,0],[1,0,0,0,0,0,1,0,0,2,0,0,2,0,0,2] >;
D8⋊2C4 in GAP, Magma, Sage, TeX
D_8\rtimes_2C_4
% in TeX
G:=Group("D8:2C4");
// GroupNames label
G:=SmallGroup(64,41);
// by ID
G=gap.SmallGroup(64,41);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,362,476,86,489,1444,730,88]);
// Polycyclic
G:=Group<a,b,c|a^8=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^3,c*b*c^-1=a^5*b>;
// generators/relations
Export
Subgroup lattice of D8⋊2C4 in TeX
Character table of D8⋊2C4 in TeX