Extensions 1→N→G→Q→1 with N=C2xSD16 and Q=C2

Direct product G=NxQ with N=C2xSD16 and Q=C2
dρLabelID
C22xSD1632C2^2xSD1664,251

Semidirect products G=N:Q with N=C2xSD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xSD16):1C2 = C8:D4φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16):1C264,149
(C2xSD16):2C2 = D4.3D4φ: C2/C1C2 ⊆ Out C2xSD16164(C2xSD16):2C264,152
(C2xSD16):3C2 = C8:3D4φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16):3C264,177
(C2xSD16):4C2 = C2xC8:C22φ: C2/C1C2 ⊆ Out C2xSD1616(C2xSD16):4C264,254
(C2xSD16):5C2 = C2xC8.C22φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16):5C264,255
(C2xSD16):6C2 = D4oSD16φ: C2/C1C2 ⊆ Out C2xSD16164(C2xSD16):6C264,258
(C2xSD16):7C2 = Q8:D4φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16):7C264,129
(C2xSD16):8C2 = D4:D4φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16):8C264,130
(C2xSD16):9C2 = C22:SD16φ: C2/C1C2 ⊆ Out C2xSD1616(C2xSD16):9C264,131
(C2xSD16):10C2 = D4.7D4φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16):10C264,133
(C2xSD16):11C2 = C4:SD16φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16):11C264,141
(C2xSD16):12C2 = D4.2D4φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16):12C264,144
(C2xSD16):13C2 = C8:8D4φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16):13C264,146
(C2xSD16):14C2 = C8:5D4φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16):14C264,173
(C2xSD16):15C2 = C8.12D4φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16):15C264,176
(C2xSD16):16C2 = C2xC4oD8φ: trivial image32(C2xSD16):16C264,253

Non-split extensions G=N.Q with N=C2xSD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xSD16).1C2 = SD16:C4φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16).1C264,121
(C2xSD16).2C2 = C8.2D4φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16).2C264,178
(C2xSD16).3C2 = D4.D4φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16).3C264,142
(C2xSD16).4C2 = Q8.D4φ: C2/C1C2 ⊆ Out C2xSD1632(C2xSD16).4C264,145
(C2xSD16).5C2 = C4xSD16φ: trivial image32(C2xSD16).5C264,119

׿
x
:
Z
F
o
wr
Q
<