Extensions 1→N→G→Q→1 with N=C2×SD16 and Q=C2

Direct product G=N×Q with N=C2×SD16 and Q=C2
dρLabelID
C22×SD1632C2^2xSD1664,251

Semidirect products G=N:Q with N=C2×SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×SD16)⋊1C2 = C8⋊D4φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16):1C264,149
(C2×SD16)⋊2C2 = D4.3D4φ: C2/C1C2 ⊆ Out C2×SD16164(C2xSD16):2C264,152
(C2×SD16)⋊3C2 = C83D4φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16):3C264,177
(C2×SD16)⋊4C2 = C2×C8⋊C22φ: C2/C1C2 ⊆ Out C2×SD1616(C2xSD16):4C264,254
(C2×SD16)⋊5C2 = C2×C8.C22φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16):5C264,255
(C2×SD16)⋊6C2 = D4○SD16φ: C2/C1C2 ⊆ Out C2×SD16164(C2xSD16):6C264,258
(C2×SD16)⋊7C2 = Q8⋊D4φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16):7C264,129
(C2×SD16)⋊8C2 = D4⋊D4φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16):8C264,130
(C2×SD16)⋊9C2 = C22⋊SD16φ: C2/C1C2 ⊆ Out C2×SD1616(C2xSD16):9C264,131
(C2×SD16)⋊10C2 = D4.7D4φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16):10C264,133
(C2×SD16)⋊11C2 = C4⋊SD16φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16):11C264,141
(C2×SD16)⋊12C2 = D4.2D4φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16):12C264,144
(C2×SD16)⋊13C2 = C88D4φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16):13C264,146
(C2×SD16)⋊14C2 = C85D4φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16):14C264,173
(C2×SD16)⋊15C2 = C8.12D4φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16):15C264,176
(C2×SD16)⋊16C2 = C2×C4○D8φ: trivial image32(C2xSD16):16C264,253

Non-split extensions G=N.Q with N=C2×SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×SD16).1C2 = SD16⋊C4φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16).1C264,121
(C2×SD16).2C2 = C8.2D4φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16).2C264,178
(C2×SD16).3C2 = D4.D4φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16).3C264,142
(C2×SD16).4C2 = Q8.D4φ: C2/C1C2 ⊆ Out C2×SD1632(C2xSD16).4C264,145
(C2×SD16).5C2 = C4×SD16φ: trivial image32(C2xSD16).5C264,119

׿
×
𝔽