p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8⋊5D4, C4⋊1SD16, C42.79C22, C4⋊Q8⋊7C2, (C4×C8)⋊12C2, C4.1(C2×D4), (C2×C4).76D4, C4⋊1D4.6C2, (C2×SD16)⋊14C2, C2.5(C4⋊1D4), (C2×C8).92C22, C2.16(C2×SD16), (C2×C4).117C23, (C2×D4).28C22, C22.113(C2×D4), (C2×Q8).24C22, SmallGroup(64,173)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊5D4
G = < a,b,c | a8=b4=c2=1, ab=ba, cac=a3, cbc=b-1 >
Subgroups: 145 in 71 conjugacy classes, 33 normal (9 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C42, C4⋊C4, C2×C8, SD16, C2×D4, C2×D4, C2×Q8, C4×C8, C4⋊1D4, C4⋊Q8, C2×SD16, C8⋊5D4
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4⋊1D4, C2×SD16, C8⋊5D4
Character table of C8⋊5D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | -2 | 2 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | -2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | √-2 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -√-2 | √-2 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | √-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | √-2 | -√-2 | √-2 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 29 23)(2 15 30 24)(3 16 31 17)(4 9 32 18)(5 10 25 19)(6 11 26 20)(7 12 27 21)(8 13 28 22)
(1 23)(2 18)(3 21)(4 24)(5 19)(6 22)(7 17)(8 20)(9 30)(10 25)(11 28)(12 31)(13 26)(14 29)(15 32)(16 27)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,29,23)(2,15,30,24)(3,16,31,17)(4,9,32,18)(5,10,25,19)(6,11,26,20)(7,12,27,21)(8,13,28,22), (1,23)(2,18)(3,21)(4,24)(5,19)(6,22)(7,17)(8,20)(9,30)(10,25)(11,28)(12,31)(13,26)(14,29)(15,32)(16,27)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,29,23)(2,15,30,24)(3,16,31,17)(4,9,32,18)(5,10,25,19)(6,11,26,20)(7,12,27,21)(8,13,28,22), (1,23)(2,18)(3,21)(4,24)(5,19)(6,22)(7,17)(8,20)(9,30)(10,25)(11,28)(12,31)(13,26)(14,29)(15,32)(16,27) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,29,23),(2,15,30,24),(3,16,31,17),(4,9,32,18),(5,10,25,19),(6,11,26,20),(7,12,27,21),(8,13,28,22)], [(1,23),(2,18),(3,21),(4,24),(5,19),(6,22),(7,17),(8,20),(9,30),(10,25),(11,28),(12,31),(13,26),(14,29),(15,32),(16,27)]])
C8⋊5D4 is a maximal subgroup of
C8.29D8 (C4×C8)⋊6C4 (C4×C8).C4 D4⋊SD16 Q8⋊SD16 C42.185C23 D4⋊2SD16 C42.191C23 Q8⋊2SD16 C8⋊8D8 C8⋊D8 C82⋊12C2 C42.664C23 C42.666C23 C8⋊3D8 C8.2D8 M4(2)⋊7D4 C42.365D4 C42.386C23 C42.259D4 C42.264D4 C42.265D4 C42.266D4 C42.268D4 C42.407C23 C42.408C23 D8⋊4D4 D4×SD16 Q8⋊9SD16 C42.528C23 C42.72C23 C42.75C23
C4p⋊SD16: C8⋊14SD16 C8⋊SD16 C8⋊8SD16 C8⋊5D8 C8⋊5SD16 C8⋊6SD16 C8⋊5D12 C12⋊4SD16 ...
C4p.(C2×D4): C42.360D4 M4(2)⋊8D4 M4(2)⋊10D4 Q16⋊5D4 SD16⋊11D4 D8⋊6D4 C24⋊15D4 C40⋊15D4 ...
C8⋊5D4 is a maximal quotient of
C8⋊5Q16 C82⋊12C2 C8.9SD16 C42.58Q8 C42.431D4 C42.432D4 (C2×C4)⋊9SD16 (C2×C8).169D4 (C2×C8).170D4
C4p⋊SD16: C8⋊8SD16 C8⋊5D8 C8⋊5SD16 C8⋊6SD16 C8⋊5D12 C12⋊4SD16 C12⋊6SD16 C8⋊5D20 ...
(C2×D4).D2p: (C2×C4)⋊3SD16 (C2×C8)⋊20D4 C24⋊15D4 C40⋊15D4 C56⋊15D4 ...
Matrix representation of C8⋊5D4 ►in GL4(𝔽17) generated by
12 | 5 | 0 | 0 |
12 | 12 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(17))| [12,12,0,0,5,12,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,0,16,0,0,1,0],[16,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0] >;
C8⋊5D4 in GAP, Magma, Sage, TeX
C_8\rtimes_5D_4
% in TeX
G:=Group("C8:5D4");
// GroupNames label
G:=SmallGroup(64,173);
// by ID
G=gap.SmallGroup(64,173);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,55,362,86,963,117]);
// Polycyclic
G:=Group<a,b,c|a^8=b^4=c^2=1,a*b=b*a,c*a*c=a^3,c*b*c=b^-1>;
// generators/relations
Export