Extensions 1→N→G→Q→1 with N=C6 and Q=D6

Direct product G=N×Q with N=C6 and Q=D6
dρLabelID
S3×C2×C624S3xC2xC672,48

Semidirect products G=N:Q with N=C6 and Q=D6
extensionφ:Q→Aut NdρLabelID
C61D6 = C2×S32φ: D6/S3C2 ⊆ Aut C6124+C6:1D672,46
C62D6 = C22×C3⋊S3φ: D6/C6C2 ⊆ Aut C636C6:2D672,49

Non-split extensions G=N.Q with N=C6 and Q=D6
extensionφ:Q→Aut NdρLabelID
C6.1D6 = S3×Dic3φ: D6/S3C2 ⊆ Aut C6244-C6.1D672,20
C6.2D6 = C6.D6φ: D6/S3C2 ⊆ Aut C6124+C6.2D672,21
C6.3D6 = D6⋊S3φ: D6/S3C2 ⊆ Aut C6244-C6.3D672,22
C6.4D6 = C3⋊D12φ: D6/S3C2 ⊆ Aut C6124+C6.4D672,23
C6.5D6 = C322Q8φ: D6/S3C2 ⊆ Aut C6244-C6.5D672,24
C6.6D6 = Dic18φ: D6/C6C2 ⊆ Aut C6722-C6.6D672,4
C6.7D6 = C4×D9φ: D6/C6C2 ⊆ Aut C6362C6.7D672,5
C6.8D6 = D36φ: D6/C6C2 ⊆ Aut C6362+C6.8D672,6
C6.9D6 = C2×Dic9φ: D6/C6C2 ⊆ Aut C672C6.9D672,7
C6.10D6 = C9⋊D4φ: D6/C6C2 ⊆ Aut C6362C6.10D672,8
C6.11D6 = C22×D9φ: D6/C6C2 ⊆ Aut C636C6.11D672,17
C6.12D6 = C324Q8φ: D6/C6C2 ⊆ Aut C672C6.12D672,31
C6.13D6 = C4×C3⋊S3φ: D6/C6C2 ⊆ Aut C636C6.13D672,32
C6.14D6 = C12⋊S3φ: D6/C6C2 ⊆ Aut C636C6.14D672,33
C6.15D6 = C2×C3⋊Dic3φ: D6/C6C2 ⊆ Aut C672C6.15D672,34
C6.16D6 = C327D4φ: D6/C6C2 ⊆ Aut C636C6.16D672,35
C6.17D6 = C3×Dic6central extension (φ=1)242C6.17D672,26
C6.18D6 = S3×C12central extension (φ=1)242C6.18D672,27
C6.19D6 = C3×D12central extension (φ=1)242C6.19D672,28
C6.20D6 = C6×Dic3central extension (φ=1)24C6.20D672,29
C6.21D6 = C3×C3⋊D4central extension (φ=1)122C6.21D672,30

׿
×
𝔽