Copied to
clipboard

G = S3xC2xC6order 72 = 23·32

Direct product of C2xC6 and S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S3xC2xC6, C62:4C2, C32:2C23, C6:(C2xC6), (C2xC6):5C6, C3:(C22xC6), (C3xC6):2C22, SmallGroup(72,48)

Series: Derived Chief Lower central Upper central

C1C3 — S3xC2xC6
C1C3C32C3xS3S3xC6 — S3xC2xC6
C3 — S3xC2xC6
C1C2xC6

Generators and relations for S3xC2xC6
 G = < a,b,c,d | a2=b6=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 118 in 69 conjugacy classes, 42 normal (10 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, C6, C6, C23, C32, D6, C2xC6, C2xC6, C3xS3, C3xC6, C22xS3, C22xC6, S3xC6, C62, S3xC2xC6
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2xC6, C3xS3, C22xS3, C22xC6, S3xC6, S3xC2xC6

Permutation representations of S3xC2xC6
On 24 points - transitive group 24T68
Generators in S24
(1 8)(2 9)(3 10)(4 11)(5 12)(6 7)(13 22)(14 23)(15 24)(16 19)(17 20)(18 21)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 3 5)(2 4 6)(7 9 11)(8 10 12)(13 17 15)(14 18 16)(19 23 21)(20 24 22)
(1 17)(2 18)(3 13)(4 14)(5 15)(6 16)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)

G:=sub<Sym(24)| (1,8)(2,9)(3,10)(4,11)(5,12)(6,7)(13,22)(14,23)(15,24)(16,19)(17,20)(18,21), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22), (1,17)(2,18)(3,13)(4,14)(5,15)(6,16)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)>;

G:=Group( (1,8)(2,9)(3,10)(4,11)(5,12)(6,7)(13,22)(14,23)(15,24)(16,19)(17,20)(18,21), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22), (1,17)(2,18)(3,13)(4,14)(5,15)(6,16)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24) );

G=PermutationGroup([[(1,8),(2,9),(3,10),(4,11),(5,12),(6,7),(13,22),(14,23),(15,24),(16,19),(17,20),(18,21)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,3,5),(2,4,6),(7,9,11),(8,10,12),(13,17,15),(14,18,16),(19,23,21),(20,24,22)], [(1,17),(2,18),(3,13),(4,14),(5,15),(6,16),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24)]])

G:=TransitiveGroup(24,68);

S3xC2xC6 is a maximal subgroup of   D6:Dic3

36 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E6A···6F6G···6O6P···6W
order12222222333336···66···66···6
size11113333112221···12···23···3

36 irreducible representations

dim1111112222
type+++++
imageC1C2C2C3C6C6S3D6C3xS3S3xC6
kernelS3xC2xC6S3xC6C62C22xS3D6C2xC6C2xC6C6C22C2
# reps16121221326

Matrix representation of S3xC2xC6 in GL3(F7) generated by

100
060
006
,
300
020
002
,
100
040
002
,
600
001
010
G:=sub<GL(3,GF(7))| [1,0,0,0,6,0,0,0,6],[3,0,0,0,2,0,0,0,2],[1,0,0,0,4,0,0,0,2],[6,0,0,0,0,1,0,1,0] >;

S3xC2xC6 in GAP, Magma, Sage, TeX

S_3\times C_2\times C_6
% in TeX

G:=Group("S3xC2xC6");
// GroupNames label

G:=SmallGroup(72,48);
// by ID

G=gap.SmallGroup(72,48);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-3,1204]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^6=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<