Copied to
clipboard

G = C5xC4oD4order 80 = 24·5

Direct product of C5 and C4oD4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5xC4oD4, D4oC20, Q8oC20, D4:2C10, Q8:2C10, C20.21C22, C10.13C23, C4o(C5xD4), C4o(C5xQ8), C20o(C5xD4), C20o(C5xQ8), (C2xC20):7C2, (C2xC4):3C10, (C5xD4):5C2, (C5xQ8):5C2, C4.5(C2xC10), C22.(C2xC10), C2.3(C22xC10), (C2xC10).2C22, SmallGroup(80,48)

Series: Derived Chief Lower central Upper central

C1C2 — C5xC4oD4
C1C2C10C2xC10C5xD4 — C5xC4oD4
C1C2 — C5xC4oD4
C1C20 — C5xC4oD4

Generators and relations for C5xC4oD4
 G = < a,b,c,d | a5=b4=d2=1, c2=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c >

Subgroups: 46 in 40 conjugacy classes, 34 normal (10 characteristic)
Quotients: C1, C2, C22, C5, C23, C10, C4oD4, C2xC10, C22xC10, C5xC4oD4
2C2
2C2
2C2
2C10
2C10
2C10

Smallest permutation representation of C5xC4oD4
On 40 points
Generators in S40
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 23 13 17)(2 24 14 18)(3 25 15 19)(4 21 11 20)(5 22 12 16)(6 31 40 30)(7 32 36 26)(8 33 37 27)(9 34 38 28)(10 35 39 29)
(1 17 13 23)(2 18 14 24)(3 19 15 25)(4 20 11 21)(5 16 12 22)(6 31 40 30)(7 32 36 26)(8 33 37 27)(9 34 38 28)(10 35 39 29)
(1 37)(2 38)(3 39)(4 40)(5 36)(6 11)(7 12)(8 13)(9 14)(10 15)(16 32)(17 33)(18 34)(19 35)(20 31)(21 30)(22 26)(23 27)(24 28)(25 29)

G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,23,13,17)(2,24,14,18)(3,25,15,19)(4,21,11,20)(5,22,12,16)(6,31,40,30)(7,32,36,26)(8,33,37,27)(9,34,38,28)(10,35,39,29), (1,17,13,23)(2,18,14,24)(3,19,15,25)(4,20,11,21)(5,16,12,22)(6,31,40,30)(7,32,36,26)(8,33,37,27)(9,34,38,28)(10,35,39,29), (1,37)(2,38)(3,39)(4,40)(5,36)(6,11)(7,12)(8,13)(9,14)(10,15)(16,32)(17,33)(18,34)(19,35)(20,31)(21,30)(22,26)(23,27)(24,28)(25,29)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,23,13,17)(2,24,14,18)(3,25,15,19)(4,21,11,20)(5,22,12,16)(6,31,40,30)(7,32,36,26)(8,33,37,27)(9,34,38,28)(10,35,39,29), (1,17,13,23)(2,18,14,24)(3,19,15,25)(4,20,11,21)(5,16,12,22)(6,31,40,30)(7,32,36,26)(8,33,37,27)(9,34,38,28)(10,35,39,29), (1,37)(2,38)(3,39)(4,40)(5,36)(6,11)(7,12)(8,13)(9,14)(10,15)(16,32)(17,33)(18,34)(19,35)(20,31)(21,30)(22,26)(23,27)(24,28)(25,29) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,23,13,17),(2,24,14,18),(3,25,15,19),(4,21,11,20),(5,22,12,16),(6,31,40,30),(7,32,36,26),(8,33,37,27),(9,34,38,28),(10,35,39,29)], [(1,17,13,23),(2,18,14,24),(3,19,15,25),(4,20,11,21),(5,16,12,22),(6,31,40,30),(7,32,36,26),(8,33,37,27),(9,34,38,28),(10,35,39,29)], [(1,37),(2,38),(3,39),(4,40),(5,36),(6,11),(7,12),(8,13),(9,14),(10,15),(16,32),(17,33),(18,34),(19,35),(20,31),(21,30),(22,26),(23,27),(24,28),(25,29)]])

C5xC4oD4 is a maximal subgroup of   D4:2Dic5  D4.Dic5  D4:D10  D4.8D10  D4.9D10  D4:8D10  D4.10D10
C5xC4oD4 is a maximal quotient of   D4xC20  Q8xC20

50 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B5C5D10A10B10C10D10E···10P20A···20H20I···20T
order122224444455551010101010···1020···2020···20
size1122211222111111112···21···12···2

50 irreducible representations

dim1111111122
type++++
imageC1C2C2C2C5C10C10C10C4oD4C5xC4oD4
kernelC5xC4oD4C2xC20C5xD4C5xQ8C4oD4C2xC4D4Q8C5C1
# reps133141212428

Matrix representation of C5xC4oD4 in GL2(F41) generated by

160
016
,
90
09
,
3213
09
,
1318
1828
G:=sub<GL(2,GF(41))| [16,0,0,16],[9,0,0,9],[32,0,13,9],[13,18,18,28] >;

C5xC4oD4 in GAP, Magma, Sage, TeX

C_5\times C_4\circ D_4
% in TeX

G:=Group("C5xC4oD4");
// GroupNames label

G:=SmallGroup(80,48);
// by ID

G=gap.SmallGroup(80,48);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-2,421,162]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^4=d^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c>;
// generators/relations

Export

Subgroup lattice of C5xC4oD4 in TeX

׿
x
:
Z
F
o
wr
Q
<