direct product, cyclic, abelian, monomial
Aliases: C87, also denoted Z87, SmallGroup(87,1)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C87 |
C1 — C87 |
C1 — C87 |
Generators and relations for C87
G = < a | a87=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87)
G:=sub<Sym(87)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)]])
C87 is a maximal subgroup of
D87
87 conjugacy classes
class | 1 | 3A | 3B | 29A | ··· | 29AB | 87A | ··· | 87BD |
order | 1 | 3 | 3 | 29 | ··· | 29 | 87 | ··· | 87 |
size | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
87 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | |||
image | C1 | C3 | C29 | C87 |
kernel | C87 | C29 | C3 | C1 |
# reps | 1 | 2 | 28 | 56 |
Matrix representation of C87 ►in GL1(𝔽349) generated by
143 |
G:=sub<GL(1,GF(349))| [143] >;
C87 in GAP, Magma, Sage, TeX
C_{87}
% in TeX
G:=Group("C87");
// GroupNames label
G:=SmallGroup(87,1);
// by ID
G=gap.SmallGroup(87,1);
# by ID
G:=PCGroup([2,-3,-29]);
// Polycyclic
G:=Group<a|a^87=1>;
// generators/relations
Export