Copied to
clipboard

G = C86order 86 = 2·43

Cyclic group

direct product, cyclic, abelian, monomial

Aliases: C86, also denoted Z86, SmallGroup(86,2)

Series: Derived Chief Lower central Upper central

C1 — C86
C1C43 — C86
C1 — C86
C1 — C86

Generators and relations for C86
 G = < a | a86=1 >


Smallest permutation representation of C86
Regular action on 86 points
Generators in S86
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86)

G:=sub<Sym(86)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86)]])

C86 is a maximal subgroup of   Dic43

86 conjugacy classes

class 1  2 43A···43AP86A···86AP
order1243···4386···86
size111···11···1

86 irreducible representations

dim1111
type++
imageC1C2C43C86
kernelC86C43C2C1
# reps114242

Matrix representation of C86 in GL1(𝔽173) generated by

24
G:=sub<GL(1,GF(173))| [24] >;

C86 in GAP, Magma, Sage, TeX

C_{86}
% in TeX

G:=Group("C86");
// GroupNames label

G:=SmallGroup(86,2);
// by ID

G=gap.SmallGroup(86,2);
# by ID

G:=PCGroup([2,-2,-43]);
// Polycyclic

G:=Group<a|a^86=1>;
// generators/relations

Export

Subgroup lattice of C86 in TeX

׿
×
𝔽