Extensions 1→N→G→Q→1 with N=C3×Q8 and Q=C4

Direct product G=N×Q with N=C3×Q8 and Q=C4
dρLabelID
Q8×C1296Q8xC1296,166

Semidirect products G=N:Q with N=C3×Q8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×Q8)⋊1C4 = Q82Dic3φ: C4/C2C2 ⊆ Out C3×Q896(C3xQ8):1C496,42
(C3×Q8)⋊2C4 = Q83Dic3φ: C4/C2C2 ⊆ Out C3×Q8244(C3xQ8):2C496,44
(C3×Q8)⋊3C4 = Q8×Dic3φ: C4/C2C2 ⊆ Out C3×Q896(C3xQ8):3C496,152
(C3×Q8)⋊4C4 = C3×Q8⋊C4φ: C4/C2C2 ⊆ Out C3×Q896(C3xQ8):4C496,53
(C3×Q8)⋊5C4 = C3×C4≀C2φ: C4/C2C2 ⊆ Out C3×Q8242(C3xQ8):5C496,54

Non-split extensions G=N.Q with N=C3×Q8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×Q8).C4 = D4.Dic3φ: C4/C2C2 ⊆ Out C3×Q8484(C3xQ8).C496,155
(C3×Q8).2C4 = C3×C8○D4φ: trivial image482(C3xQ8).2C496,178

׿
×
𝔽