Copied to
clipboard

G = C3xQ8:C4order 96 = 25·3

Direct product of C3 and Q8:C4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3xQ8:C4, Q8:2C12, C6.6Q16, C12.61D4, C6.10SD16, C4:C4.1C6, (C2xC8).1C6, (C3xQ8):4C4, (C2xC24).3C2, C4.2(C2xC12), (C2xC6).47D4, C4.12(C3xD4), (C2xQ8).4C6, (C6xQ8).7C2, C2.1(C3xQ16), C12.29(C2xC4), C2.2(C3xSD16), C22.9(C3xD4), C6.25(C22:C4), (C2xC12).115C22, (C3xC4:C4).8C2, (C2xC4).18(C2xC6), C2.7(C3xC22:C4), SmallGroup(96,53)

Series: Derived Chief Lower central Upper central

C1C4 — C3xQ8:C4
C1C2C22C2xC4C2xC12C3xC4:C4 — C3xQ8:C4
C1C2C4 — C3xQ8:C4
C1C2xC6C2xC12 — C3xQ8:C4

Generators and relations for C3xQ8:C4
 G = < a,b,c,d | a3=b4=d4=1, c2=b2, ab=ba, ac=ca, ad=da, cbc-1=dbd-1=b-1, dcd-1=b-1c >

Subgroups: 60 in 42 conjugacy classes, 28 normal (24 characteristic)
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, D4, C12, C2xC6, C22:C4, SD16, Q16, C2xC12, C3xD4, Q8:C4, C3xC22:C4, C3xSD16, C3xQ16, C3xQ8:C4
2C4
2C4
4C4
2C2xC4
2C2xC4
2C8
2Q8
2C12
2C12
4C12
2C2xC12
2C3xQ8
2C24
2C2xC12

Smallest permutation representation of C3xQ8:C4
Regular action on 96 points
Generators in S96
(1 22 14)(2 23 15)(3 24 16)(4 21 13)(5 91 83)(6 92 84)(7 89 81)(8 90 82)(9 28 17)(10 25 18)(11 26 19)(12 27 20)(29 45 37)(30 46 38)(31 47 39)(32 48 40)(33 49 41)(34 50 42)(35 51 43)(36 52 44)(53 69 61)(54 70 62)(55 71 63)(56 72 64)(57 74 65)(58 75 66)(59 76 67)(60 73 68)(77 93 85)(78 94 86)(79 95 87)(80 96 88)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)
(1 34 3 36)(2 33 4 35)(5 69 7 71)(6 72 8 70)(9 30 11 32)(10 29 12 31)(13 43 15 41)(14 42 16 44)(17 38 19 40)(18 37 20 39)(21 51 23 49)(22 50 24 52)(25 45 27 47)(26 48 28 46)(53 81 55 83)(54 84 56 82)(57 78 59 80)(58 77 60 79)(61 89 63 91)(62 92 64 90)(65 86 67 88)(66 85 68 87)(73 95 75 93)(74 94 76 96)
(1 60 11 54)(2 59 12 53)(3 58 9 56)(4 57 10 55)(5 52 94 46)(6 51 95 45)(7 50 96 48)(8 49 93 47)(13 65 18 63)(14 68 19 62)(15 67 20 61)(16 66 17 64)(21 74 25 71)(22 73 26 70)(23 76 27 69)(24 75 28 72)(29 84 35 79)(30 83 36 78)(31 82 33 77)(32 81 34 80)(37 92 43 87)(38 91 44 86)(39 90 41 85)(40 89 42 88)

G:=sub<Sym(96)| (1,22,14)(2,23,15)(3,24,16)(4,21,13)(5,91,83)(6,92,84)(7,89,81)(8,90,82)(9,28,17)(10,25,18)(11,26,19)(12,27,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(33,49,41)(34,50,42)(35,51,43)(36,52,44)(53,69,61)(54,70,62)(55,71,63)(56,72,64)(57,74,65)(58,75,66)(59,76,67)(60,73,68)(77,93,85)(78,94,86)(79,95,87)(80,96,88), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (1,34,3,36)(2,33,4,35)(5,69,7,71)(6,72,8,70)(9,30,11,32)(10,29,12,31)(13,43,15,41)(14,42,16,44)(17,38,19,40)(18,37,20,39)(21,51,23,49)(22,50,24,52)(25,45,27,47)(26,48,28,46)(53,81,55,83)(54,84,56,82)(57,78,59,80)(58,77,60,79)(61,89,63,91)(62,92,64,90)(65,86,67,88)(66,85,68,87)(73,95,75,93)(74,94,76,96), (1,60,11,54)(2,59,12,53)(3,58,9,56)(4,57,10,55)(5,52,94,46)(6,51,95,45)(7,50,96,48)(8,49,93,47)(13,65,18,63)(14,68,19,62)(15,67,20,61)(16,66,17,64)(21,74,25,71)(22,73,26,70)(23,76,27,69)(24,75,28,72)(29,84,35,79)(30,83,36,78)(31,82,33,77)(32,81,34,80)(37,92,43,87)(38,91,44,86)(39,90,41,85)(40,89,42,88)>;

G:=Group( (1,22,14)(2,23,15)(3,24,16)(4,21,13)(5,91,83)(6,92,84)(7,89,81)(8,90,82)(9,28,17)(10,25,18)(11,26,19)(12,27,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(33,49,41)(34,50,42)(35,51,43)(36,52,44)(53,69,61)(54,70,62)(55,71,63)(56,72,64)(57,74,65)(58,75,66)(59,76,67)(60,73,68)(77,93,85)(78,94,86)(79,95,87)(80,96,88), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (1,34,3,36)(2,33,4,35)(5,69,7,71)(6,72,8,70)(9,30,11,32)(10,29,12,31)(13,43,15,41)(14,42,16,44)(17,38,19,40)(18,37,20,39)(21,51,23,49)(22,50,24,52)(25,45,27,47)(26,48,28,46)(53,81,55,83)(54,84,56,82)(57,78,59,80)(58,77,60,79)(61,89,63,91)(62,92,64,90)(65,86,67,88)(66,85,68,87)(73,95,75,93)(74,94,76,96), (1,60,11,54)(2,59,12,53)(3,58,9,56)(4,57,10,55)(5,52,94,46)(6,51,95,45)(7,50,96,48)(8,49,93,47)(13,65,18,63)(14,68,19,62)(15,67,20,61)(16,66,17,64)(21,74,25,71)(22,73,26,70)(23,76,27,69)(24,75,28,72)(29,84,35,79)(30,83,36,78)(31,82,33,77)(32,81,34,80)(37,92,43,87)(38,91,44,86)(39,90,41,85)(40,89,42,88) );

G=PermutationGroup([[(1,22,14),(2,23,15),(3,24,16),(4,21,13),(5,91,83),(6,92,84),(7,89,81),(8,90,82),(9,28,17),(10,25,18),(11,26,19),(12,27,20),(29,45,37),(30,46,38),(31,47,39),(32,48,40),(33,49,41),(34,50,42),(35,51,43),(36,52,44),(53,69,61),(54,70,62),(55,71,63),(56,72,64),(57,74,65),(58,75,66),(59,76,67),(60,73,68),(77,93,85),(78,94,86),(79,95,87),(80,96,88)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96)], [(1,34,3,36),(2,33,4,35),(5,69,7,71),(6,72,8,70),(9,30,11,32),(10,29,12,31),(13,43,15,41),(14,42,16,44),(17,38,19,40),(18,37,20,39),(21,51,23,49),(22,50,24,52),(25,45,27,47),(26,48,28,46),(53,81,55,83),(54,84,56,82),(57,78,59,80),(58,77,60,79),(61,89,63,91),(62,92,64,90),(65,86,67,88),(66,85,68,87),(73,95,75,93),(74,94,76,96)], [(1,60,11,54),(2,59,12,53),(3,58,9,56),(4,57,10,55),(5,52,94,46),(6,51,95,45),(7,50,96,48),(8,49,93,47),(13,65,18,63),(14,68,19,62),(15,67,20,61),(16,66,17,64),(21,74,25,71),(22,73,26,70),(23,76,27,69),(24,75,28,72),(29,84,35,79),(30,83,36,78),(31,82,33,77),(32,81,34,80),(37,92,43,87),(38,91,44,86),(39,90,41,85),(40,89,42,88)]])

C3xQ8:C4 is a maximal subgroup of
Dic3:7SD16  C3:Q16:C4  Dic3:4Q16  Q8:2Dic6  Dic3.1Q16  Q8:3Dic6  (C2xC8).D6  Dic3:Q16  Q8.3Dic6  (C2xQ8).36D6  Dic6.11D4  Q8.4Dic6  Q8:C4:S3  (S3xQ8):C4  Q8:7(C4xS3)  C4:C4.150D6  D6.1SD16  Q8:3D12  D6:2SD16  Q8.11D12  D6:Q16  Q8:4D12  D6.Q16  C3:(C8:D4)  D6:1Q16  D6:C8.C2  C8:Dic3:C2  C3:C8.D4  Q8:3(C4xS3)  Dic3:SD16  D12.12D4  C12xSD16  C12xQ16

42 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E4F6A···6F8A8B8C8D12A12B12C12D12E···12L24A···24H
order1222334444446···688881212121212···1224···24
size1111112244441···1222222224···42···2

42 irreducible representations

dim111111111122222222
type++++++-
imageC1C2C2C2C3C4C6C6C6C12D4D4SD16Q16C3xD4C3xD4C3xSD16C3xQ16
kernelC3xQ8:C4C3xC4:C4C2xC24C6xQ8Q8:C4C3xQ8C4:C4C2xC8C2xQ8Q8C12C2xC6C6C6C4C22C2C2
# reps111124222811222244

Matrix representation of C3xQ8:C4 in GL3(F73) generated by

6400
080
008
,
100
001
0720
,
100
0659
098
,
4600
0629
02967
G:=sub<GL(3,GF(73))| [64,0,0,0,8,0,0,0,8],[1,0,0,0,0,72,0,1,0],[1,0,0,0,65,9,0,9,8],[46,0,0,0,6,29,0,29,67] >;

C3xQ8:C4 in GAP, Magma, Sage, TeX

C_3\times Q_8\rtimes C_4
% in TeX

G:=Group("C3xQ8:C4");
// GroupNames label

G:=SmallGroup(96,53);
// by ID

G=gap.SmallGroup(96,53);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-2,144,169,295,1443,729,117]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=d^4=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^-1*c>;
// generators/relations

Export

Subgroup lattice of C3xQ8:C4 in TeX

׿
x
:
Z
F
o
wr
Q
<