extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2×Q8) = C4×Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C6 | 96 | | C6.1(C2xQ8) | 96,75 |
C6.2(C2×Q8) = C12⋊2Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C6 | 96 | | C6.2(C2xQ8) | 96,76 |
C6.3(C2×Q8) = C12.6Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C6 | 96 | | C6.3(C2xQ8) | 96,77 |
C6.4(C2×Q8) = Dic3.D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C6 | 48 | | C6.4(C2xQ8) | 96,85 |
C6.5(C2×Q8) = C12⋊Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C6 | 96 | | C6.5(C2xQ8) | 96,95 |
C6.6(C2×Q8) = C4.Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C6 | 96 | | C6.6(C2xQ8) | 96,97 |
C6.7(C2×Q8) = C2×Dic3⋊C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C6 | 96 | | C6.7(C2xQ8) | 96,130 |
C6.8(C2×Q8) = C12.48D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C6 | 48 | | C6.8(C2xQ8) | 96,131 |
C6.9(C2×Q8) = C2×C4⋊Dic3 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C6 | 96 | | C6.9(C2xQ8) | 96,132 |
C6.10(C2×Q8) = Dic6⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C6 | 96 | | C6.10(C2xQ8) | 96,94 |
C6.11(C2×Q8) = Dic3.Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C6 | 96 | | C6.11(C2xQ8) | 96,96 |
C6.12(C2×Q8) = S3×C4⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C6 | 48 | | C6.12(C2xQ8) | 96,98 |
C6.13(C2×Q8) = D6⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C6 | 48 | | C6.13(C2xQ8) | 96,103 |
C6.14(C2×Q8) = C4.D12 | φ: C2×Q8/Q8 → C2 ⊆ Aut C6 | 48 | | C6.14(C2xQ8) | 96,104 |
C6.15(C2×Q8) = Dic3⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C6 | 96 | | C6.15(C2xQ8) | 96,151 |
C6.16(C2×Q8) = Q8×Dic3 | φ: C2×Q8/Q8 → C2 ⊆ Aut C6 | 96 | | C6.16(C2xQ8) | 96,152 |
C6.17(C2×Q8) = D6⋊3Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C6 | 48 | | C6.17(C2xQ8) | 96,153 |
C6.18(C2×Q8) = C6×C4⋊C4 | central extension (φ=1) | 96 | | C6.18(C2xQ8) | 96,163 |
C6.19(C2×Q8) = Q8×C12 | central extension (φ=1) | 96 | | C6.19(C2xQ8) | 96,166 |
C6.20(C2×Q8) = C3×C22⋊Q8 | central extension (φ=1) | 48 | | C6.20(C2xQ8) | 96,169 |
C6.21(C2×Q8) = C3×C42.C2 | central extension (φ=1) | 96 | | C6.21(C2xQ8) | 96,172 |
C6.22(C2×Q8) = C3×C4⋊Q8 | central extension (φ=1) | 96 | | C6.22(C2xQ8) | 96,175 |