Copied to
clipboard

G = C2xS3xQ8order 96 = 25·3

Direct product of C2, S3 and Q8

direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary

Aliases: C2xS3xQ8, C6.8C24, C12.22C23, Dic6:9C22, D6.10C23, Dic3.5C23, C6:2(C2xQ8), (C6xQ8):5C2, C3:2(C22xQ8), (C2xC4).61D6, C2.9(S3xC23), (C3xQ8):5C22, (C2xDic6):13C2, C4.22(C22xS3), (C2xC6).66C23, (C4xS3).13C22, (C2xC12).46C22, C22.31(C22xS3), (C22xS3).36C22, (C2xDic3).44C22, (S3xC2xC4).6C2, SmallGroup(96,212)

Series: Derived Chief Lower central Upper central

C1C6 — C2xS3xQ8
C1C3C6D6C22xS3S3xC2xC4 — C2xS3xQ8
C3C6 — C2xS3xQ8
C1C22C2xQ8

Generators and relations for C2xS3xQ8
 G = < a,b,c,d,e | a2=b3=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 274 in 156 conjugacy classes, 97 normal (10 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, Q8, Q8, C23, Dic3, C12, D6, C2xC6, C22xC4, C2xQ8, C2xQ8, Dic6, C4xS3, C2xDic3, C2xC12, C3xQ8, C22xS3, C22xQ8, C2xDic6, S3xC2xC4, S3xQ8, C6xQ8, C2xS3xQ8
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2xQ8, C24, C22xS3, C22xQ8, S3xQ8, S3xC23, C2xS3xQ8

Character table of C2xS3xQ8

 class 12A2B2C2D2E2F2G34A4B4C4D4E4F4G4H4I4J4K4L6A6B6C12A12B12C12D12E12F
 size 111133332222222666666222444444
ρ1111111111111111111111111111111    trivial
ρ21-1-11-111-1111-11-1-111-1-11-1-1-11-1-1111-1    linear of order 2
ρ31111111111-1-1-1-11-1-11-11-1111-111-1-1-1    linear of order 2
ρ41-1-11-111-111-11-11-1-1-1-1111-1-111-11-1-11    linear of order 2
ρ51-1-111-1-11111-11-1-1-1-111-11-1-11-1-1111-1    linear of order 2
ρ61111-1-1-1-11111111-1-1-1-1-1-1111111111    linear of order 2
ρ71-1-111-1-1111-11-11-1111-1-1-1-1-111-11-1-11    linear of order 2
ρ81111-1-1-1-111-1-1-1-1111-11-11111-111-1-1-1    linear of order 2
ρ9111111111-1-1-111-1-11-11-1-1111-1-1-11-11    linear of order 2
ρ101-1-11-111-11-1-111-11-111-1-11-1-1111-11-1-1    linear of order 2
ρ11111111111-111-1-1-11-1-1-1-111111-1-1-11-1    linear of order 2
ρ121-1-11-111-11-11-1-1111-111-1-1-1-11-11-1-111    linear of order 2
ρ131-1-111-1-111-1-111-111-1-111-1-1-1111-11-1-1    linear of order 2
ρ141111-1-1-1-11-1-1-111-11-11-111111-1-1-11-11    linear of order 2
ρ151-1-111-1-111-11-1-111-11-1-111-1-11-11-1-111    linear of order 2
ρ161111-1-1-1-11-111-1-1-1-11111-11111-1-1-11-1    linear of order 2
ρ1722220000-1-222-2-2-2000000-1-1-1-1111-11    orthogonal lifted from D6
ρ182-2-220000-1-22-2-22200000011-11-111-1-1    orthogonal lifted from D6
ρ1922220000-1222222000000-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ202-2-220000-1-2-222-2200000011-1-1-11-111    orthogonal lifted from D6
ρ2122220000-1-2-2-222-2000000-1-1-1111-11-1    orthogonal lifted from D6
ρ2222220000-12-2-2-2-22000000-1-1-11-1-1111    orthogonal lifted from D6
ρ232-2-220000-12-22-22-200000011-1-11-111-1    orthogonal lifted from D6
ρ242-2-220000-122-22-2-200000011-111-1-1-11    orthogonal lifted from D6
ρ2522-2-222-2-22000000000000-22-2000000    symplectic lifted from Q8, Schur index 2
ρ262-22-2-22-2220000000000002-2-2000000    symplectic lifted from Q8, Schur index 2
ρ272-22-22-22-220000000000002-2-2000000    symplectic lifted from Q8, Schur index 2
ρ2822-2-2-2-2222000000000000-22-2000000    symplectic lifted from Q8, Schur index 2
ρ294-44-40000-2000000000000-222000000    symplectic lifted from S3xQ8, Schur index 2
ρ3044-4-40000-20000000000002-22000000    symplectic lifted from S3xQ8, Schur index 2

Smallest permutation representation of C2xS3xQ8
On 48 points
Generators in S48
(1 35)(2 36)(3 33)(4 34)(5 29)(6 30)(7 31)(8 32)(9 38)(10 39)(11 40)(12 37)(13 25)(14 26)(15 27)(16 28)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 43 47)(14 44 48)(15 41 45)(16 42 46)(17 21 27)(18 22 28)(19 23 25)(20 24 26)(29 35 38)(30 36 39)(31 33 40)(32 34 37)
(1 35)(2 36)(3 33)(4 34)(5 38)(6 39)(7 40)(8 37)(9 29)(10 30)(11 31)(12 32)(13 23)(14 24)(15 21)(16 22)(17 41)(18 42)(19 43)(20 44)(25 47)(26 48)(27 45)(28 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 43 3 41)(2 42 4 44)(5 13 7 15)(6 16 8 14)(9 47 11 45)(10 46 12 48)(17 35 19 33)(18 34 20 36)(21 38 23 40)(22 37 24 39)(25 31 27 29)(26 30 28 32)

G:=sub<Sym(48)| (1,35)(2,36)(3,33)(4,34)(5,29)(6,30)(7,31)(8,32)(9,38)(10,39)(11,40)(12,37)(13,25)(14,26)(15,27)(16,28)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,43,47)(14,44,48)(15,41,45)(16,42,46)(17,21,27)(18,22,28)(19,23,25)(20,24,26)(29,35,38)(30,36,39)(31,33,40)(32,34,37), (1,35)(2,36)(3,33)(4,34)(5,38)(6,39)(7,40)(8,37)(9,29)(10,30)(11,31)(12,32)(13,23)(14,24)(15,21)(16,22)(17,41)(18,42)(19,43)(20,44)(25,47)(26,48)(27,45)(28,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,43,3,41)(2,42,4,44)(5,13,7,15)(6,16,8,14)(9,47,11,45)(10,46,12,48)(17,35,19,33)(18,34,20,36)(21,38,23,40)(22,37,24,39)(25,31,27,29)(26,30,28,32)>;

G:=Group( (1,35)(2,36)(3,33)(4,34)(5,29)(6,30)(7,31)(8,32)(9,38)(10,39)(11,40)(12,37)(13,25)(14,26)(15,27)(16,28)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,43,47)(14,44,48)(15,41,45)(16,42,46)(17,21,27)(18,22,28)(19,23,25)(20,24,26)(29,35,38)(30,36,39)(31,33,40)(32,34,37), (1,35)(2,36)(3,33)(4,34)(5,38)(6,39)(7,40)(8,37)(9,29)(10,30)(11,31)(12,32)(13,23)(14,24)(15,21)(16,22)(17,41)(18,42)(19,43)(20,44)(25,47)(26,48)(27,45)(28,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,43,3,41)(2,42,4,44)(5,13,7,15)(6,16,8,14)(9,47,11,45)(10,46,12,48)(17,35,19,33)(18,34,20,36)(21,38,23,40)(22,37,24,39)(25,31,27,29)(26,30,28,32) );

G=PermutationGroup([[(1,35),(2,36),(3,33),(4,34),(5,29),(6,30),(7,31),(8,32),(9,38),(10,39),(11,40),(12,37),(13,25),(14,26),(15,27),(16,28),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,43,47),(14,44,48),(15,41,45),(16,42,46),(17,21,27),(18,22,28),(19,23,25),(20,24,26),(29,35,38),(30,36,39),(31,33,40),(32,34,37)], [(1,35),(2,36),(3,33),(4,34),(5,38),(6,39),(7,40),(8,37),(9,29),(10,30),(11,31),(12,32),(13,23),(14,24),(15,21),(16,22),(17,41),(18,42),(19,43),(20,44),(25,47),(26,48),(27,45),(28,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,43,3,41),(2,42,4,44),(5,13,7,15),(6,16,8,14),(9,47,11,45),(10,46,12,48),(17,35,19,33),(18,34,20,36),(21,38,23,40),(22,37,24,39),(25,31,27,29),(26,30,28,32)]])

C2xS3xQ8 is a maximal subgroup of
(S3xQ8):C4  Q8:3D12  D6:Q16  D6:8SD16  D6:5Q16  C42.125D6  Q8:6D12  C6.162- 1+4  Dic6:21D4  Dic6:22D4  C42.141D6  Dic6:10D4  C42.171D6  D12:8Q8  C6.1072- 1+4
C2xS3xQ8 is a maximal quotient of
C6.102+ 1+4  Dic6:10Q8  C42.232D6  D12:10Q8  (Q8xDic3):C2  C6.752- 1+4  Dic6:21D4  C6.512+ 1+4  C6.1182+ 1+4  C6.522+ 1+4  Dic6:7Q8  C42.236D6  C42.148D6  D12:7Q8  Dic6:8Q8  Dic6:9Q8  D12:8Q8  C42.241D6  C42.174D6  D12:9Q8

Matrix representation of C2xS3xQ8 in GL4(F13) generated by

12000
01200
00120
00012
,
121200
1000
0010
0001
,
12000
1100
00120
00012
,
1000
0100
00128
0031
,
1000
0100
0050
00118
G:=sub<GL(4,GF(13))| [12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[12,1,0,0,12,0,0,0,0,0,1,0,0,0,0,1],[12,1,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,1,0,0,0,0,12,3,0,0,8,1],[1,0,0,0,0,1,0,0,0,0,5,11,0,0,0,8] >;

C2xS3xQ8 in GAP, Magma, Sage, TeX

C_2\times S_3\times Q_8
% in TeX

G:=Group("C2xS3xQ8");
// GroupNames label

G:=SmallGroup(96,212);
// by ID

G=gap.SmallGroup(96,212);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,86,159,69,2309]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Character table of C2xS3xQ8 in TeX

׿
x
:
Z
F
o
wr
Q
<