direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary
Aliases: C2xS3xQ8, C6.8C24, C12.22C23, Dic6:9C22, D6.10C23, Dic3.5C23, C6:2(C2xQ8), (C6xQ8):5C2, C3:2(C22xQ8), (C2xC4).61D6, C2.9(S3xC23), (C3xQ8):5C22, (C2xDic6):13C2, C4.22(C22xS3), (C2xC6).66C23, (C4xS3).13C22, (C2xC12).46C22, C22.31(C22xS3), (C22xS3).36C22, (C2xDic3).44C22, (S3xC2xC4).6C2, SmallGroup(96,212)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2xS3xQ8
G = < a,b,c,d,e | a2=b3=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 274 in 156 conjugacy classes, 97 normal (10 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, Q8, Q8, C23, Dic3, C12, D6, C2xC6, C22xC4, C2xQ8, C2xQ8, Dic6, C4xS3, C2xDic3, C2xC12, C3xQ8, C22xS3, C22xQ8, C2xDic6, S3xC2xC4, S3xQ8, C6xQ8, C2xS3xQ8
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2xQ8, C24, C22xS3, C22xQ8, S3xQ8, S3xC23, C2xS3xQ8
Character table of C2xS3xQ8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 6A | 6B | 6C | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ10 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ13 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ21 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ22 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ24 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ25 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ26 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ27 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ28 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ29 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3xQ8, Schur index 2 |
ρ30 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3xQ8, Schur index 2 |
(1 35)(2 36)(3 33)(4 34)(5 29)(6 30)(7 31)(8 32)(9 38)(10 39)(11 40)(12 37)(13 25)(14 26)(15 27)(16 28)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 43 47)(14 44 48)(15 41 45)(16 42 46)(17 21 27)(18 22 28)(19 23 25)(20 24 26)(29 35 38)(30 36 39)(31 33 40)(32 34 37)
(1 35)(2 36)(3 33)(4 34)(5 38)(6 39)(7 40)(8 37)(9 29)(10 30)(11 31)(12 32)(13 23)(14 24)(15 21)(16 22)(17 41)(18 42)(19 43)(20 44)(25 47)(26 48)(27 45)(28 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 43 3 41)(2 42 4 44)(5 13 7 15)(6 16 8 14)(9 47 11 45)(10 46 12 48)(17 35 19 33)(18 34 20 36)(21 38 23 40)(22 37 24 39)(25 31 27 29)(26 30 28 32)
G:=sub<Sym(48)| (1,35)(2,36)(3,33)(4,34)(5,29)(6,30)(7,31)(8,32)(9,38)(10,39)(11,40)(12,37)(13,25)(14,26)(15,27)(16,28)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,43,47)(14,44,48)(15,41,45)(16,42,46)(17,21,27)(18,22,28)(19,23,25)(20,24,26)(29,35,38)(30,36,39)(31,33,40)(32,34,37), (1,35)(2,36)(3,33)(4,34)(5,38)(6,39)(7,40)(8,37)(9,29)(10,30)(11,31)(12,32)(13,23)(14,24)(15,21)(16,22)(17,41)(18,42)(19,43)(20,44)(25,47)(26,48)(27,45)(28,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,43,3,41)(2,42,4,44)(5,13,7,15)(6,16,8,14)(9,47,11,45)(10,46,12,48)(17,35,19,33)(18,34,20,36)(21,38,23,40)(22,37,24,39)(25,31,27,29)(26,30,28,32)>;
G:=Group( (1,35)(2,36)(3,33)(4,34)(5,29)(6,30)(7,31)(8,32)(9,38)(10,39)(11,40)(12,37)(13,25)(14,26)(15,27)(16,28)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,43,47)(14,44,48)(15,41,45)(16,42,46)(17,21,27)(18,22,28)(19,23,25)(20,24,26)(29,35,38)(30,36,39)(31,33,40)(32,34,37), (1,35)(2,36)(3,33)(4,34)(5,38)(6,39)(7,40)(8,37)(9,29)(10,30)(11,31)(12,32)(13,23)(14,24)(15,21)(16,22)(17,41)(18,42)(19,43)(20,44)(25,47)(26,48)(27,45)(28,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,43,3,41)(2,42,4,44)(5,13,7,15)(6,16,8,14)(9,47,11,45)(10,46,12,48)(17,35,19,33)(18,34,20,36)(21,38,23,40)(22,37,24,39)(25,31,27,29)(26,30,28,32) );
G=PermutationGroup([[(1,35),(2,36),(3,33),(4,34),(5,29),(6,30),(7,31),(8,32),(9,38),(10,39),(11,40),(12,37),(13,25),(14,26),(15,27),(16,28),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,43,47),(14,44,48),(15,41,45),(16,42,46),(17,21,27),(18,22,28),(19,23,25),(20,24,26),(29,35,38),(30,36,39),(31,33,40),(32,34,37)], [(1,35),(2,36),(3,33),(4,34),(5,38),(6,39),(7,40),(8,37),(9,29),(10,30),(11,31),(12,32),(13,23),(14,24),(15,21),(16,22),(17,41),(18,42),(19,43),(20,44),(25,47),(26,48),(27,45),(28,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,43,3,41),(2,42,4,44),(5,13,7,15),(6,16,8,14),(9,47,11,45),(10,46,12,48),(17,35,19,33),(18,34,20,36),(21,38,23,40),(22,37,24,39),(25,31,27,29),(26,30,28,32)]])
C2xS3xQ8 is a maximal subgroup of
(S3xQ8):C4 Q8:3D12 D6:Q16 D6:8SD16 D6:5Q16 C42.125D6 Q8:6D12 C6.162- 1+4 Dic6:21D4 Dic6:22D4 C42.141D6 Dic6:10D4 C42.171D6 D12:8Q8 C6.1072- 1+4
C2xS3xQ8 is a maximal quotient of
C6.102+ 1+4 Dic6:10Q8 C42.232D6 D12:10Q8 (Q8xDic3):C2 C6.752- 1+4 Dic6:21D4 C6.512+ 1+4 C6.1182+ 1+4 C6.522+ 1+4 Dic6:7Q8 C42.236D6 C42.148D6 D12:7Q8 Dic6:8Q8 Dic6:9Q8 D12:8Q8 C42.241D6 C42.174D6 D12:9Q8
Matrix representation of C2xS3xQ8 ►in GL4(F13) generated by
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
12 | 12 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 |
1 | 1 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 12 | 8 |
0 | 0 | 3 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 5 | 0 |
0 | 0 | 11 | 8 |
G:=sub<GL(4,GF(13))| [12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[12,1,0,0,12,0,0,0,0,0,1,0,0,0,0,1],[12,1,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,1,0,0,0,0,12,3,0,0,8,1],[1,0,0,0,0,1,0,0,0,0,5,11,0,0,0,8] >;
C2xS3xQ8 in GAP, Magma, Sage, TeX
C_2\times S_3\times Q_8
% in TeX
G:=Group("C2xS3xQ8");
// GroupNames label
G:=SmallGroup(96,212);
// by ID
G=gap.SmallGroup(96,212);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,86,159,69,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations
Export