Extensions 1→N→G→Q→1 with N=C2×C4 and Q=Dic3

Direct product G=N×Q with N=C2×C4 and Q=Dic3
dρLabelID
C2×C4×Dic396C2xC4xDic396,129

Semidirect products G=N:Q with N=C2×C4 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊Dic3 = C23.7D6φ: Dic3/C3C4 ⊆ Aut C2×C4244(C2xC4):Dic396,41
(C2×C4)⋊2Dic3 = C6.C42φ: Dic3/C6C2 ⊆ Aut C2×C496(C2xC4):2Dic396,38
(C2×C4)⋊3Dic3 = C2×C4⋊Dic3φ: Dic3/C6C2 ⊆ Aut C2×C496(C2xC4):3Dic396,132
(C2×C4)⋊4Dic3 = C23.26D6φ: Dic3/C6C2 ⊆ Aut C2×C448(C2xC4):4Dic396,133

Non-split extensions G=N.Q with N=C2×C4 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C4).Dic3 = C12.10D4φ: Dic3/C3C4 ⊆ Aut C2×C4484(C2xC4).Dic396,43
(C2×C4).2Dic3 = C42.S3φ: Dic3/C6C2 ⊆ Aut C2×C496(C2xC4).2Dic396,10
(C2×C4).3Dic3 = C12⋊C8φ: Dic3/C6C2 ⊆ Aut C2×C496(C2xC4).3Dic396,11
(C2×C4).4Dic3 = C12.55D4φ: Dic3/C6C2 ⊆ Aut C2×C448(C2xC4).4Dic396,37
(C2×C4).5Dic3 = C12.C8φ: Dic3/C6C2 ⊆ Aut C2×C4482(C2xC4).5Dic396,19
(C2×C4).6Dic3 = C2×C4.Dic3φ: Dic3/C6C2 ⊆ Aut C2×C448(C2xC4).6Dic396,128
(C2×C4).7Dic3 = C4×C3⋊C8central extension (φ=1)96(C2xC4).7Dic396,9
(C2×C4).8Dic3 = C2×C3⋊C16central extension (φ=1)96(C2xC4).8Dic396,18
(C2×C4).9Dic3 = C22×C3⋊C8central extension (φ=1)96(C2xC4).9Dic396,127

׿
×
𝔽