d | ρ | Label | ID | ||
---|---|---|---|---|---|
C2×C4×Dic3 | 96 | C2xC4xDic3 | 96,129 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C4)⋊Dic3 = C23.7D6 | φ: Dic3/C3 → C4 ⊆ Aut C2×C4 | 24 | 4 | (C2xC4):Dic3 | 96,41 |
(C2×C4)⋊2Dic3 = C6.C42 | φ: Dic3/C6 → C2 ⊆ Aut C2×C4 | 96 | (C2xC4):2Dic3 | 96,38 | |
(C2×C4)⋊3Dic3 = C2×C4⋊Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C2×C4 | 96 | (C2xC4):3Dic3 | 96,132 | |
(C2×C4)⋊4Dic3 = C23.26D6 | φ: Dic3/C6 → C2 ⊆ Aut C2×C4 | 48 | (C2xC4):4Dic3 | 96,133 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C4).Dic3 = C12.10D4 | φ: Dic3/C3 → C4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).Dic3 | 96,43 |
(C2×C4).2Dic3 = C42.S3 | φ: Dic3/C6 → C2 ⊆ Aut C2×C4 | 96 | (C2xC4).2Dic3 | 96,10 | |
(C2×C4).3Dic3 = C12⋊C8 | φ: Dic3/C6 → C2 ⊆ Aut C2×C4 | 96 | (C2xC4).3Dic3 | 96,11 | |
(C2×C4).4Dic3 = C12.55D4 | φ: Dic3/C6 → C2 ⊆ Aut C2×C4 | 48 | (C2xC4).4Dic3 | 96,37 | |
(C2×C4).5Dic3 = C12.C8 | φ: Dic3/C6 → C2 ⊆ Aut C2×C4 | 48 | 2 | (C2xC4).5Dic3 | 96,19 |
(C2×C4).6Dic3 = C2×C4.Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C2×C4 | 48 | (C2xC4).6Dic3 | 96,128 | |
(C2×C4).7Dic3 = C4×C3⋊C8 | central extension (φ=1) | 96 | (C2xC4).7Dic3 | 96,9 | |
(C2×C4).8Dic3 = C2×C3⋊C16 | central extension (φ=1) | 96 | (C2xC4).8Dic3 | 96,18 | |
(C2×C4).9Dic3 = C22×C3⋊C8 | central extension (φ=1) | 96 | (C2xC4).9Dic3 | 96,127 |