Copied to
clipboard

G = C12.10D4order 96 = 25·3

10th non-split extension by C12 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.10D4, (C2×C4).4D6, (C2×C4).Dic3, (C2×C12).1C4, (C6×Q8).2C2, (C2×Q8).4S3, C4.15(C3⋊D4), C32(C4.10D4), C4.Dic3.4C2, C6.17(C22⋊C4), (C2×C12).19C22, C22.4(C2×Dic3), C2.7(C6.D4), (C2×C6).30(C2×C4), SmallGroup(96,43)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C12.10D4
C1C3C6C12C2×C12C4.Dic3 — C12.10D4
C3C6C2×C6 — C12.10D4
C1C2C2×C4C2×Q8

Generators and relations for C12.10D4
 G = < a,b,c | a12=1, b4=a6, c2=a9, bab-1=a-1, cac-1=a5, cbc-1=a9b3 >

2C2
2C4
2C4
2C6
2Q8
2Q8
6C8
6C8
2C12
2C12
3M4(2)
3M4(2)
2C3⋊C8
2C3×Q8
2C3×Q8
2C3⋊C8
3C4.10D4

Character table of C12.10D4

 class 12A2B34A4B4C4D6A6B6C8A8B8C8D12A12B12C12D12E12F
 size 1122224422212121212444444
ρ1111111111111111111111    trivial
ρ2111111-1-1111-11-11-1-11-1-11    linear of order 2
ρ311111111111-1-1-1-1111111    linear of order 2
ρ4111111-1-11111-11-1-1-11-1-11    linear of order 2
ρ51111-1-11-1111-iii-i11-1-1-1-1    linear of order 4
ρ61111-1-11-1111i-i-ii11-1-1-1-1    linear of order 4
ρ71111-1-1-11111ii-i-i-1-1-111-1    linear of order 4
ρ81111-1-1-11111-i-iii-1-1-111-1    linear of order 4
ρ9222-122-2-2-1-1-1000011-111-1    orthogonal lifted from D6
ρ10222-12222-1-1-10000-1-1-1-1-1-1    orthogonal lifted from S3
ρ1122-22-2200-2-22000000-2002    orthogonal lifted from D4
ρ1222-222-200-2-22000000200-2    orthogonal lifted from D4
ρ13222-1-2-2-22-1-1-10000111-1-11    symplectic lifted from Dic3, Schur index 2
ρ14222-1-2-22-2-1-1-10000-1-11111    symplectic lifted from Dic3, Schur index 2
ρ1522-2-1-220011-10000-3--31--3-3-1    complex lifted from C3⋊D4
ρ1622-2-12-20011-10000--3-3-1--3-31    complex lifted from C3⋊D4
ρ1722-2-12-20011-10000-3--3-1-3--31    complex lifted from C3⋊D4
ρ1822-2-1-220011-10000--3-31-3--3-1    complex lifted from C3⋊D4
ρ194-404000000-40000000000    symplectic lifted from C4.10D4, Schur index 2
ρ204-40-20000-2-32-320000000000    complex faithful
ρ214-40-200002-3-2-320000000000    complex faithful

Smallest permutation representation of C12.10D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 43 4 40 7 37 10 46)(2 42 5 39 8 48 11 45)(3 41 6 38 9 47 12 44)(13 28 16 25 19 34 22 31)(14 27 17 36 20 33 23 30)(15 26 18 35 21 32 24 29)
(1 25 10 34 7 31 4 28)(2 30 11 27 8 36 5 33)(3 35 12 32 9 29 6 26)(13 46 22 43 19 40 16 37)(14 39 23 48 20 45 17 42)(15 44 24 41 21 38 18 47)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,43,4,40,7,37,10,46)(2,42,5,39,8,48,11,45)(3,41,6,38,9,47,12,44)(13,28,16,25,19,34,22,31)(14,27,17,36,20,33,23,30)(15,26,18,35,21,32,24,29), (1,25,10,34,7,31,4,28)(2,30,11,27,8,36,5,33)(3,35,12,32,9,29,6,26)(13,46,22,43,19,40,16,37)(14,39,23,48,20,45,17,42)(15,44,24,41,21,38,18,47)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,43,4,40,7,37,10,46)(2,42,5,39,8,48,11,45)(3,41,6,38,9,47,12,44)(13,28,16,25,19,34,22,31)(14,27,17,36,20,33,23,30)(15,26,18,35,21,32,24,29), (1,25,10,34,7,31,4,28)(2,30,11,27,8,36,5,33)(3,35,12,32,9,29,6,26)(13,46,22,43,19,40,16,37)(14,39,23,48,20,45,17,42)(15,44,24,41,21,38,18,47) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,43,4,40,7,37,10,46),(2,42,5,39,8,48,11,45),(3,41,6,38,9,47,12,44),(13,28,16,25,19,34,22,31),(14,27,17,36,20,33,23,30),(15,26,18,35,21,32,24,29)], [(1,25,10,34,7,31,4,28),(2,30,11,27,8,36,5,33),(3,35,12,32,9,29,6,26),(13,46,22,43,19,40,16,37),(14,39,23,48,20,45,17,42),(15,44,24,41,21,38,18,47)]])

C12.10D4 is a maximal subgroup of
(C2×C4).D12  (C2×C12).D4  C42.Dic3  C42.3Dic3  S3×C4.10D4  M4(2).21D6  D12.14D4  D12.15D4  C24.44D4  C24.29D4  M4(2).15D6  M4(2).16D6  (C6×D4).16C4  2- 1+44S3  2- 1+4.2S3  C36.9D4  C12.14D12  (C6×C12).C4  C12.6D20  C60.10D4  (C2×C60).C4
C12.10D4 is a maximal quotient of
(C2×C12)⋊C8  C12.(C4⋊C4)  C42.8D6  C12.10D8  C36.9D4  C12.14D12  (C6×C12).C4  C12.6D20  C60.10D4  (C2×C60).C4

Matrix representation of C12.10D4 in GL4(𝔽7) generated by

0310
0304
2606
6034
,
5441
5606
2351
1515
,
5363
0354
1102
5166
G:=sub<GL(4,GF(7))| [0,0,2,6,3,3,6,0,1,0,0,3,0,4,6,4],[5,5,2,1,4,6,3,5,4,0,5,1,1,6,1,5],[5,0,1,5,3,3,1,1,6,5,0,6,3,4,2,6] >;

C12.10D4 in GAP, Magma, Sage, TeX

C_{12}._{10}D_4
% in TeX

G:=Group("C12.10D4");
// GroupNames label

G:=SmallGroup(96,43);
// by ID

G=gap.SmallGroup(96,43);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,24,121,103,188,86,579,2309]);
// Polycyclic

G:=Group<a,b,c|a^12=1,b^4=a^6,c^2=a^9,b*a*b^-1=a^-1,c*a*c^-1=a^5,c*b*c^-1=a^9*b^3>;
// generators/relations

Export

Subgroup lattice of C12.10D4 in TeX
Character table of C12.10D4 in TeX

׿
×
𝔽