Extensions 1→N→G→Q→1 with N=C2×SL2(𝔽3) and Q=C2

Direct product G=N×Q with N=C2×SL2(𝔽3) and Q=C2
dρLabelID
C22×SL2(𝔽3)32C2^2xSL(2,3)96,198

Semidirect products G=N:Q with N=C2×SL2(𝔽3) and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×SL2(𝔽3))⋊1C2 = D4.A4φ: C2/C1C2 ⊆ Out C2×SL2(𝔽3)164-(C2xSL(2,3)):1C296,202
(C2×SL2(𝔽3))⋊2C2 = C2×GL2(𝔽3)φ: C2/C1C2 ⊆ Out C2×SL2(𝔽3)16(C2xSL(2,3)):2C296,189
(C2×SL2(𝔽3))⋊3C2 = Q8.D6φ: C2/C1C2 ⊆ Out C2×SL2(𝔽3)164-(C2xSL(2,3)):3C296,190
(C2×SL2(𝔽3))⋊4C2 = C2×C4.A4φ: trivial image32(C2xSL(2,3)):4C296,200

Non-split extensions G=N.Q with N=C2×SL2(𝔽3) and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×SL2(𝔽3)).1C2 = Q8⋊Dic3φ: C2/C1C2 ⊆ Out C2×SL2(𝔽3)32(C2xSL(2,3)).1C296,66
(C2×SL2(𝔽3)).2C2 = C2×CSU2(𝔽3)φ: C2/C1C2 ⊆ Out C2×SL2(𝔽3)32(C2xSL(2,3)).2C296,188
(C2×SL2(𝔽3)).3C2 = C4×SL2(𝔽3)φ: trivial image32(C2xSL(2,3)).3C296,69

׿
×
𝔽