Copied to
clipboard

G = Q8⋊Dic3order 96 = 25·3

The semidirect product of Q8 and Dic3 acting via Dic3/C2=S3

non-abelian, soluble

Aliases: Q8⋊Dic3, C22.3S4, C2.GL2(𝔽3), C2.CSU2(𝔽3), SL2(𝔽3)⋊1C4, (C2×Q8).1S3, C2.2(A4⋊C4), (C2×SL2(𝔽3)).1C2, SmallGroup(96,66)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(𝔽3) — Q8⋊Dic3
C1C2Q8SL2(𝔽3)C2×SL2(𝔽3) — Q8⋊Dic3
SL2(𝔽3) — Q8⋊Dic3
C1C22

Generators and relations for Q8⋊Dic3
 G = < a,b,c,d | a4=c6=1, b2=a2, d2=c3, bab-1=dbd-1=a-1, cac-1=b, dad-1=a2b, cbc-1=ab, dcd-1=c-1 >

4C3
3C4
3C4
12C4
4C6
4C6
4C6
3Q8
3C2×C4
6C2×C4
6C8
4Dic3
4C2×C6
4Dic3
3C2×C8
3C4⋊C4
4C2×Dic3
3Q8⋊C4

Character table of Q8⋊Dic3

 class 12A2B2C34A4B4C4D6A6B6C8A8B8C8D
 size 111186612128886666
ρ11111111111111111    trivial
ρ21111111-1-1111-1-1-1-1    linear of order 2
ρ311-1-111-1-ii-11-1ii-i-i    linear of order 4
ρ411-1-111-1i-i-11-1-i-iii    linear of order 4
ρ52222-12200-1-1-10000    orthogonal lifted from S3
ρ622-2-2-12-2001-110000    symplectic lifted from Dic3, Schur index 2
ρ72-22-2-1000011-12-22-2    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ82-22-2-1000011-1-22-22    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ92-2-22-10000-111--2-2-2--2    complex lifted from GL2(𝔽3)
ρ102-2-22-10000-111-2--2--2-2    complex lifted from GL2(𝔽3)
ρ1133330-1-111000-1-1-1-1    orthogonal lifted from S4
ρ1233330-1-1-1-10001111    orthogonal lifted from S4
ρ1333-3-30-11-ii000-i-iii    complex lifted from A4⋊C4
ρ1433-3-30-11i-i000ii-i-i    complex lifted from A4⋊C4
ρ154-4-44100001-1-10000    orthogonal lifted from GL2(𝔽3)
ρ164-44-410000-1-110000    symplectic lifted from CSU2(𝔽3), Schur index 2

Smallest permutation representation of Q8⋊Dic3
On 32 points
Generators in S32
(1 20 7 14)(2 17 8 11)(3 26 6 31)(4 23 5 28)(9 13 15 19)(10 18 16 12)(21 25 32 30)(22 29 27 24)
(1 16 7 10)(2 19 8 13)(3 22 6 27)(4 25 5 30)(9 17 15 11)(12 20 18 14)(21 28 32 23)(24 31 29 26)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12 13 14)(15 16 17 18 19 20)(21 22 23 24 25 26)(27 28 29 30 31 32)
(1 5 2 6)(3 7 4 8)(9 29 12 32)(10 28 13 31)(11 27 14 30)(15 24 18 21)(16 23 19 26)(17 22 20 25)

G:=sub<Sym(32)| (1,20,7,14)(2,17,8,11)(3,26,6,31)(4,23,5,28)(9,13,15,19)(10,18,16,12)(21,25,32,30)(22,29,27,24), (1,16,7,10)(2,19,8,13)(3,22,6,27)(4,25,5,30)(9,17,15,11)(12,20,18,14)(21,28,32,23)(24,31,29,26), (1,2)(3,4)(5,6)(7,8)(9,10,11,12,13,14)(15,16,17,18,19,20)(21,22,23,24,25,26)(27,28,29,30,31,32), (1,5,2,6)(3,7,4,8)(9,29,12,32)(10,28,13,31)(11,27,14,30)(15,24,18,21)(16,23,19,26)(17,22,20,25)>;

G:=Group( (1,20,7,14)(2,17,8,11)(3,26,6,31)(4,23,5,28)(9,13,15,19)(10,18,16,12)(21,25,32,30)(22,29,27,24), (1,16,7,10)(2,19,8,13)(3,22,6,27)(4,25,5,30)(9,17,15,11)(12,20,18,14)(21,28,32,23)(24,31,29,26), (1,2)(3,4)(5,6)(7,8)(9,10,11,12,13,14)(15,16,17,18,19,20)(21,22,23,24,25,26)(27,28,29,30,31,32), (1,5,2,6)(3,7,4,8)(9,29,12,32)(10,28,13,31)(11,27,14,30)(15,24,18,21)(16,23,19,26)(17,22,20,25) );

G=PermutationGroup([[(1,20,7,14),(2,17,8,11),(3,26,6,31),(4,23,5,28),(9,13,15,19),(10,18,16,12),(21,25,32,30),(22,29,27,24)], [(1,16,7,10),(2,19,8,13),(3,22,6,27),(4,25,5,30),(9,17,15,11),(12,20,18,14),(21,28,32,23),(24,31,29,26)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12,13,14),(15,16,17,18,19,20),(21,22,23,24,25,26),(27,28,29,30,31,32)], [(1,5,2,6),(3,7,4,8),(9,29,12,32),(10,28,13,31),(11,27,14,30),(15,24,18,21),(16,23,19,26),(17,22,20,25)]])

Q8⋊Dic3 is a maximal subgroup of
Q8⋊Dic6  C4×CSU2(𝔽3)  CSU2(𝔽3)⋊C4  Q8.Dic6  SL2(𝔽3)⋊Q8  C4×GL2(𝔽3)  GL2(𝔽3)⋊C4  C23.14S4  C23.15S4  C23.16S4  C4.A4⋊C4  SL2(𝔽3).D4  (C2×C4).S4  SL2(𝔽3)⋊D4  C6.GL2(𝔽3)  C22.2S5  Q8⋊Dic15  D10.S4
Q8⋊Dic3 is a maximal quotient of
C2.U2(𝔽3)  Q8⋊Dic9  C6.GL2(𝔽3)  Q8⋊Dic15  D10.S4

Matrix representation of Q8⋊Dic3 in GL3(𝔽73) generated by

100
0270
02646
,
100
07247
0451
,
7200
04627
0126
,
4600
05163
04122
G:=sub<GL(3,GF(73))| [1,0,0,0,27,26,0,0,46],[1,0,0,0,72,45,0,47,1],[72,0,0,0,46,1,0,27,26],[46,0,0,0,51,41,0,63,22] >;

Q8⋊Dic3 in GAP, Magma, Sage, TeX

Q_8\rtimes {\rm Dic}_3
% in TeX

G:=Group("Q8:Dic3");
// GroupNames label

G:=SmallGroup(96,66);
// by ID

G=gap.SmallGroup(96,66);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,2,-2,12,146,579,447,117,364,286,202,88]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^6=1,b^2=a^2,d^2=c^3,b*a*b^-1=d*b*d^-1=a^-1,c*a*c^-1=b,d*a*d^-1=a^2*b,c*b*c^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of Q8⋊Dic3 in TeX
Character table of Q8⋊Dic3 in TeX

׿
×
𝔽