Extensions 1→N→G→Q→1 with N=S3×D4 and Q=C2

Direct product G=N×Q with N=S3×D4 and Q=C2
dρLabelID
C2×S3×D424C2xS3xD496,209

Semidirect products G=N:Q with N=S3×D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×D4)⋊1C2 = S3×D8φ: C2/C1C2 ⊆ Out S3×D4244+(S3xD4):1C296,117
(S3×D4)⋊2C2 = D8⋊S3φ: C2/C1C2 ⊆ Out S3×D4244(S3xD4):2C296,118
(S3×D4)⋊3C2 = Q83D6φ: C2/C1C2 ⊆ Out S3×D4244+(S3xD4):3C296,121
(S3×D4)⋊4C2 = D46D6φ: C2/C1C2 ⊆ Out S3×D4244(S3xD4):4C296,211
(S3×D4)⋊5C2 = D4○D12φ: C2/C1C2 ⊆ Out S3×D4244+(S3xD4):5C296,216
(S3×D4)⋊6C2 = S3×C4○D4φ: trivial image244(S3xD4):6C296,215

Non-split extensions G=N.Q with N=S3×D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×D4).C2 = S3×SD16φ: C2/C1C2 ⊆ Out S3×D4244(S3xD4).C296,120

׿
×
𝔽