extension | φ:Q→Aut N | d | ρ | Label | ID |
C10.1(C2xC4) = D5:C8 | φ: C2xC4/C2 → C4 ⊆ Aut C10 | 40 | 4 | C10.1(C2xC4) | 80,28 |
C10.2(C2xC4) = C4.F5 | φ: C2xC4/C2 → C4 ⊆ Aut C10 | 40 | 4 | C10.2(C2xC4) | 80,29 |
C10.3(C2xC4) = C4xF5 | φ: C2xC4/C2 → C4 ⊆ Aut C10 | 20 | 4 | C10.3(C2xC4) | 80,30 |
C10.4(C2xC4) = C4:F5 | φ: C2xC4/C2 → C4 ⊆ Aut C10 | 20 | 4 | C10.4(C2xC4) | 80,31 |
C10.5(C2xC4) = C2xC5:C8 | φ: C2xC4/C2 → C4 ⊆ Aut C10 | 80 | | C10.5(C2xC4) | 80,32 |
C10.6(C2xC4) = C22.F5 | φ: C2xC4/C2 → C4 ⊆ Aut C10 | 40 | 4- | C10.6(C2xC4) | 80,33 |
C10.7(C2xC4) = C22:F5 | φ: C2xC4/C2 → C4 ⊆ Aut C10 | 20 | 4+ | C10.7(C2xC4) | 80,34 |
C10.8(C2xC4) = C8xD5 | φ: C2xC4/C4 → C2 ⊆ Aut C10 | 40 | 2 | C10.8(C2xC4) | 80,4 |
C10.9(C2xC4) = C8:D5 | φ: C2xC4/C4 → C2 ⊆ Aut C10 | 40 | 2 | C10.9(C2xC4) | 80,5 |
C10.10(C2xC4) = C4xDic5 | φ: C2xC4/C4 → C2 ⊆ Aut C10 | 80 | | C10.10(C2xC4) | 80,11 |
C10.11(C2xC4) = C10.D4 | φ: C2xC4/C4 → C2 ⊆ Aut C10 | 80 | | C10.11(C2xC4) | 80,12 |
C10.12(C2xC4) = D10:C4 | φ: C2xC4/C4 → C2 ⊆ Aut C10 | 40 | | C10.12(C2xC4) | 80,14 |
C10.13(C2xC4) = C2xC5:2C8 | φ: C2xC4/C22 → C2 ⊆ Aut C10 | 80 | | C10.13(C2xC4) | 80,9 |
C10.14(C2xC4) = C4.Dic5 | φ: C2xC4/C22 → C2 ⊆ Aut C10 | 40 | 2 | C10.14(C2xC4) | 80,10 |
C10.15(C2xC4) = C4:Dic5 | φ: C2xC4/C22 → C2 ⊆ Aut C10 | 80 | | C10.15(C2xC4) | 80,13 |
C10.16(C2xC4) = C23.D5 | φ: C2xC4/C22 → C2 ⊆ Aut C10 | 40 | | C10.16(C2xC4) | 80,19 |
C10.17(C2xC4) = C5xC22:C4 | central extension (φ=1) | 40 | | C10.17(C2xC4) | 80,21 |
C10.18(C2xC4) = C5xC4:C4 | central extension (φ=1) | 80 | | C10.18(C2xC4) | 80,22 |
C10.19(C2xC4) = C5xM4(2) | central extension (φ=1) | 40 | 2 | C10.19(C2xC4) | 80,24 |