Copied to
clipboard

G = C2xC5:2C8order 80 = 24·5

Direct product of C2 and C5:2C8

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2xC5:2C8, C10:2C8, C20.6C4, C4.14D10, C4.3Dic5, C20.14C22, C22.2Dic5, C5:4(C2xC8), C4o(C5:2C8), (C2xC4).5D5, (C2xC10).4C4, (C2xC20).6C2, C10.13(C2xC4), C2.1(C2xDic5), SmallGroup(80,9)

Series: Derived Chief Lower central Upper central

C1C5 — C2xC5:2C8
C1C5C10C20C5:2C8 — C2xC5:2C8
C5 — C2xC5:2C8
C1C2xC4

Generators and relations for C2xC5:2C8
 G = < a,b,c | a2=b5=c8=1, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 34 in 22 conjugacy classes, 19 normal (13 characteristic)
Quotients: C1, C2, C4, C22, C8, C2xC4, D5, C2xC8, Dic5, D10, C5:2C8, C2xDic5, C2xC5:2C8
5C8
5C8
5C2xC8

Smallest permutation representation of C2xC5:2C8
Regular action on 80 points
Generators in S80
(1 60)(2 61)(3 62)(4 63)(5 64)(6 57)(7 58)(8 59)(9 36)(10 37)(11 38)(12 39)(13 40)(14 33)(15 34)(16 35)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(41 70)(42 71)(43 72)(44 65)(45 66)(46 67)(47 68)(48 69)(49 78)(50 79)(51 80)(52 73)(53 74)(54 75)(55 76)(56 77)
(1 11 25 67 75)(2 76 68 26 12)(3 13 27 69 77)(4 78 70 28 14)(5 15 29 71 79)(6 80 72 30 16)(7 9 31 65 73)(8 74 66 32 10)(17 46 54 60 38)(18 39 61 55 47)(19 48 56 62 40)(20 33 63 49 41)(21 42 50 64 34)(22 35 57 51 43)(23 44 52 58 36)(24 37 59 53 45)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,60)(2,61)(3,62)(4,63)(5,64)(6,57)(7,58)(8,59)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(41,70)(42,71)(43,72)(44,65)(45,66)(46,67)(47,68)(48,69)(49,78)(50,79)(51,80)(52,73)(53,74)(54,75)(55,76)(56,77), (1,11,25,67,75)(2,76,68,26,12)(3,13,27,69,77)(4,78,70,28,14)(5,15,29,71,79)(6,80,72,30,16)(7,9,31,65,73)(8,74,66,32,10)(17,46,54,60,38)(18,39,61,55,47)(19,48,56,62,40)(20,33,63,49,41)(21,42,50,64,34)(22,35,57,51,43)(23,44,52,58,36)(24,37,59,53,45), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;

G:=Group( (1,60)(2,61)(3,62)(4,63)(5,64)(6,57)(7,58)(8,59)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(41,70)(42,71)(43,72)(44,65)(45,66)(46,67)(47,68)(48,69)(49,78)(50,79)(51,80)(52,73)(53,74)(54,75)(55,76)(56,77), (1,11,25,67,75)(2,76,68,26,12)(3,13,27,69,77)(4,78,70,28,14)(5,15,29,71,79)(6,80,72,30,16)(7,9,31,65,73)(8,74,66,32,10)(17,46,54,60,38)(18,39,61,55,47)(19,48,56,62,40)(20,33,63,49,41)(21,42,50,64,34)(22,35,57,51,43)(23,44,52,58,36)(24,37,59,53,45), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,60),(2,61),(3,62),(4,63),(5,64),(6,57),(7,58),(8,59),(9,36),(10,37),(11,38),(12,39),(13,40),(14,33),(15,34),(16,35),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(41,70),(42,71),(43,72),(44,65),(45,66),(46,67),(47,68),(48,69),(49,78),(50,79),(51,80),(52,73),(53,74),(54,75),(55,76),(56,77)], [(1,11,25,67,75),(2,76,68,26,12),(3,13,27,69,77),(4,78,70,28,14),(5,15,29,71,79),(6,80,72,30,16),(7,9,31,65,73),(8,74,66,32,10),(17,46,54,60,38),(18,39,61,55,47),(19,48,56,62,40),(20,33,63,49,41),(21,42,50,64,34),(22,35,57,51,43),(23,44,52,58,36),(24,37,59,53,45)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])

C2xC5:2C8 is a maximal subgroup of
C42.D5  C20:3C8  C10.D8  C20.Q8  D20:6C4  C10.Q16  C8xDic5  C20.8Q8  C40:8C4  D10:1C8  C20.53D4  C20.55D4  D4:Dic5  Q8:Dic5  C20.C8  D5xC2xC8  D20.2C4  D4.Dic5  D4.8D10  C20.14F5
C2xC5:2C8 is a maximal quotient of
C20:3C8  C20.4C8  C20.55D4  C20.14F5

32 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B8A···8H10A···10F20A···20H
order12224444558···810···1020···20
size11111111225···52···22···2

32 irreducible representations

dim11111122222
type++++-+-
imageC1C2C2C4C4C8D5Dic5D10Dic5C5:2C8
kernelC2xC5:2C8C5:2C8C2xC20C20C2xC10C10C2xC4C4C4C22C2
# reps12122822228

Matrix representation of C2xC5:2C8 in GL3(F41) generated by

4000
010
001
,
100
03440
010
,
100
0313
03210
G:=sub<GL(3,GF(41))| [40,0,0,0,1,0,0,0,1],[1,0,0,0,34,1,0,40,0],[1,0,0,0,31,32,0,3,10] >;

C2xC5:2C8 in GAP, Magma, Sage, TeX

C_2\times C_5\rtimes_2C_8
% in TeX

G:=Group("C2xC5:2C8");
// GroupNames label

G:=SmallGroup(80,9);
// by ID

G=gap.SmallGroup(80,9);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-5,20,42,1604]);
// Polycyclic

G:=Group<a,b,c|a^2=b^5=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C2xC5:2C8 in TeX

׿
x
:
Z
F
o
wr
Q
<