Extensions 1→N→G→Q→1 with N=C2 and Q=C2×S4

Direct product G=N×Q with N=C2 and Q=C2×S4
dρLabelID
C22×S412C2^2xS496,226


Non-split extensions G=N.Q with N=C2 and Q=C2×S4
extensionφ:Q→Aut NdρLabelID
C2.1(C2×S4) = C4×S4central extension (φ=1)123C2.1(C2xS4)96,186
C2.2(C2×S4) = C2×A4⋊C4central extension (φ=1)24C2.2(C2xS4)96,194
C2.3(C2×S4) = A4⋊Q8central stem extension (φ=1)246-C2.3(C2xS4)96,185
C2.4(C2×S4) = C4⋊S4central stem extension (φ=1)126+C2.4(C2xS4)96,187
C2.5(C2×S4) = C2×CSU2(𝔽3)central stem extension (φ=1)32C2.5(C2xS4)96,188
C2.6(C2×S4) = C2×GL2(𝔽3)central stem extension (φ=1)16C2.6(C2xS4)96,189
C2.7(C2×S4) = Q8.D6central stem extension (φ=1)164-C2.7(C2xS4)96,190
C2.8(C2×S4) = C4.S4central stem extension (φ=1)324-C2.8(C2xS4)96,191
C2.9(C2×S4) = C4.6S4central stem extension (φ=1)162C2.9(C2xS4)96,192
C2.10(C2×S4) = C4.3S4central stem extension (φ=1)164+C2.10(C2xS4)96,193
C2.11(C2×S4) = A4⋊D4central stem extension (φ=1)126+C2.11(C2xS4)96,195

׿
×
𝔽