Extensions 1→N→G→Q→1 with N=C4xD5 and Q=C2

Direct product G=NxQ with N=C4xD5 and Q=C2
dρLabelID
C2xC4xD540C2xC4xD580,36

Semidirect products G=N:Q with N=C4xD5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xD5):1C2 = D4xD5φ: C2/C1C2 ⊆ Out C4xD5204+(C4xD5):1C280,39
(C4xD5):2C2 = D4:2D5φ: C2/C1C2 ⊆ Out C4xD5404-(C4xD5):2C280,40
(C4xD5):3C2 = Q8:2D5φ: C2/C1C2 ⊆ Out C4xD5404+(C4xD5):3C280,42
(C4xD5):4C2 = C4oD20φ: C2/C1C2 ⊆ Out C4xD5402(C4xD5):4C280,38

Non-split extensions G=N.Q with N=C4xD5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xD5).1C2 = Q8xD5φ: C2/C1C2 ⊆ Out C4xD5404-(C4xD5).1C280,41
(C4xD5).2C2 = C8:D5φ: C2/C1C2 ⊆ Out C4xD5402(C4xD5).2C280,5
(C4xD5).3C2 = C4.F5φ: C2/C1C2 ⊆ Out C4xD5404(C4xD5).3C280,29
(C4xD5).4C2 = C4:F5φ: C2/C1C2 ⊆ Out C4xD5204(C4xD5).4C280,31
(C4xD5).5C2 = D5:C8φ: C2/C1C2 ⊆ Out C4xD5404(C4xD5).5C280,28
(C4xD5).6C2 = C4xF5φ: C2/C1C2 ⊆ Out C4xD5204(C4xD5).6C280,30
(C4xD5).7C2 = C8xD5φ: trivial image402(C4xD5).7C280,4

׿
x
:
Z
F
o
wr
Q
<