Copied to
clipboard

G = D4xD5order 80 = 24·5

Direct product of D4 and D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4xD5, C4:1D10, C20:C22, D20:3C2, C22:1D10, D10:2C22, C10.5C23, Dic5:1C22, C5:2(C2xD4), (C4xD5):1C2, (C5xD4):2C2, C5:D4:1C2, (C2xC10):C22, (C22xD5):2C2, C2.6(C22xD5), SmallGroup(80,39)

Series: Derived Chief Lower central Upper central

C1C10 — D4xD5
C1C5C10D10C22xD5 — D4xD5
C5C10 — D4xD5
C1C2D4

Generators and relations for D4xD5
 G = < a,b,c,d | a4=b2=c5=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 170 in 54 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2xC4, D4, D4, C23, D5, D5, C10, C10, C2xD4, Dic5, C20, D10, D10, D10, C2xC10, C4xD5, D20, C5:D4, C5xD4, C22xD5, D4xD5
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, D10, C22xD5, D4xD5

Character table of D4xD5

 class 12A2B2C2D2E2F2G4A4B5A5B10A10B10C10D10E10F20A20B
 size 11225510102102222444444
ρ111111111111111111111    trivial
ρ21111-1-1-1-11-11111111111    linear of order 2
ρ311-1-111-1-1111111-1-1-1-111    linear of order 2
ρ411-1-1-1-1111-11111-1-1-1-111    linear of order 2
ρ5111-1-1-1-11-111111-111-1-1-1    linear of order 2
ρ6111-1111-1-1-11111-111-1-1-1    linear of order 2
ρ711-11-1-11-1-1111111-1-11-1-1    linear of order 2
ρ811-1111-11-1-111111-1-11-1-1    linear of order 2
ρ92-2002-2000022-2-2000000    orthogonal lifted from D4
ρ102-200-22000022-2-2000000    orthogonal lifted from D4
ρ1122-2-2000020-1-5/2-1+5/2-1+5/2-1-5/21-5/21+5/21-5/21+5/2-1+5/2-1-5/2    orthogonal lifted from D10
ρ1222-2-2000020-1+5/2-1-5/2-1-5/2-1+5/21+5/21-5/21+5/21-5/2-1-5/2-1+5/2    orthogonal lifted from D10
ρ132222000020-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ142222000020-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ1522-220000-20-1+5/2-1-5/2-1-5/2-1+5/2-1-5/21-5/21+5/2-1+5/21+5/21-5/2    orthogonal lifted from D10
ρ16222-20000-20-1+5/2-1-5/2-1-5/2-1+5/21+5/2-1+5/2-1-5/21-5/21+5/21-5/2    orthogonal lifted from D10
ρ17222-20000-20-1-5/2-1+5/2-1+5/2-1-5/21-5/2-1-5/2-1+5/21+5/21-5/21+5/2    orthogonal lifted from D10
ρ1822-220000-20-1-5/2-1+5/2-1+5/2-1-5/2-1+5/21+5/21-5/2-1-5/21-5/21+5/2    orthogonal lifted from D10
ρ194-400000000-1+5-1-51+51-5000000    orthogonal faithful
ρ204-400000000-1-5-1+51-51+5000000    orthogonal faithful

Permutation representations of D4xD5
On 20 points - transitive group 20T21
Generators in S20
(1 14 9 19)(2 15 10 20)(3 11 6 16)(4 12 7 17)(5 13 8 18)
(11 16)(12 17)(13 18)(14 19)(15 20)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)

G:=sub<Sym(20)| (1,14,9,19)(2,15,10,20)(3,11,6,16)(4,12,7,17)(5,13,8,18), (11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)>;

G:=Group( (1,14,9,19)(2,15,10,20)(3,11,6,16)(4,12,7,17)(5,13,8,18), (11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19) );

G=PermutationGroup([[(1,14,9,19),(2,15,10,20),(3,11,6,16),(4,12,7,17),(5,13,8,18)], [(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19)]])

G:=TransitiveGroup(20,21);

D4xD5 is a maximal subgroup of
D20:C4  D8:D5  D40:C2  D4:6D10  D4:8D10  C20:D6  D10:D6  C20:D10  D10:D10
D4xD5 is a maximal quotient of
Dic5.14D4  Dic5:4D4  C22:D20  D10.12D4  D10:D4  Dic5.5D4  C20:Q8  D20:8C4  D10.13D4  C4:D20  D10:Q8  D8:D5  D8:3D5  D40:C2  SD16:D5  SD16:3D5  Q16:D5  Q8.D10  C23:D10  C20:2D4  Dic5:D4  C20:D4  C20:D6  D10:D6  C20:D10  D10:D10

Matrix representation of D4xD5 in GL4(F41) generated by

1000
0100
00040
0010
,
40000
04000
0010
00040
,
6100
40000
0010
0001
,
1600
04000
00400
00040
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,40,0],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,40],[6,40,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,6,40,0,0,0,0,40,0,0,0,0,40] >;

D4xD5 in GAP, Magma, Sage, TeX

D_4\times D_5
% in TeX

G:=Group("D4xD5");
// GroupNames label

G:=SmallGroup(80,39);
// by ID

G=gap.SmallGroup(80,39);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-5,97,1604]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^5=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of D4xD5 in TeX

׿
x
:
Z
F
o
wr
Q
<