Extensions 1→N→G→Q→1 with N=C4×S3 and Q=C4

Direct product G=N×Q with N=C4×S3 and Q=C4
dρLabelID
S3×C4248S3xC4^296,78

Semidirect products G=N:Q with N=C4×S3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1C4 = S3×C4⋊C4φ: C4/C2C2 ⊆ Out C4×S348(C4xS3):1C496,98
(C4×S3)⋊2C4 = C4⋊C47S3φ: C4/C2C2 ⊆ Out C4×S348(C4xS3):2C496,99
(C4×S3)⋊3C4 = C422S3φ: C4/C2C2 ⊆ Out C4×S348(C4xS3):3C496,79

Non-split extensions G=N.Q with N=C4×S3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×S3).1C4 = S3×M4(2)φ: C4/C2C2 ⊆ Out C4×S3244(C4xS3).1C496,113
(C4×S3).2C4 = D6.C8φ: C4/C2C2 ⊆ Out C4×S3482(C4xS3).2C496,5
(C4×S3).3C4 = C2×C8⋊S3φ: C4/C2C2 ⊆ Out C4×S348(C4xS3).3C496,107
(C4×S3).4C4 = S3×C16φ: trivial image482(C4xS3).4C496,4
(C4×S3).5C4 = S3×C2×C8φ: trivial image48(C4xS3).5C496,106

׿
×
𝔽