direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3×M4(2), C8⋊6D6, C24⋊7C22, Dic3○M4(2), C12.38C23, (S3×C8)⋊7C2, C8⋊S3⋊5C2, (C4×S3).1C4, C4.15(C4×S3), C3⋊C8⋊11C22, D6.6(C2×C4), (C2×C4).45D6, C3⋊2(C2×M4(2)), C12.12(C2×C4), C4.Dic3⋊5C2, C22.7(C4×S3), (C3×M4(2))⋊5C2, (C22×S3).4C4, C6.15(C22×C4), C4.38(C22×S3), (C2×Dic3).6C4, Dic3.7(C2×C4), (C4×S3).18C22, (C2×C12).25C22, (S3×C2×C4).4C2, C2.16(S3×C2×C4), (C2×C6).5(C2×C4), SmallGroup(96,113)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×M4(2)
G = < a,b,c,d | a3=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c5 >
Subgroups: 130 in 68 conjugacy classes, 39 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C8, C8, C2×C4, C2×C4, C23, Dic3, C12, D6, D6, C2×C6, C2×C8, M4(2), M4(2), C22×C4, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C2×M4(2), S3×C8, C8⋊S3, C4.Dic3, C3×M4(2), S3×C2×C4, S3×M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, M4(2), C22×C4, C4×S3, C22×S3, C2×M4(2), S3×C2×C4, S3×M4(2)
Character table of S3×M4(2)
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 2 | 3 | 3 | 6 | 2 | 1 | 1 | 2 | 3 | 3 | 6 | 2 | 4 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | i | -i | -i | i | i | -i | -1 | -1 | 1 | -i | -i | i | i | linear of order 4 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | i | i | -i | -i | -1 | -1 | -1 | i | -i | -i | i | linear of order 4 |
ρ11 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -i | i | i | -i | i | i | -i | -i | -1 | -1 | -1 | -i | i | i | -i | linear of order 4 |
ρ12 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -i | i | -i | i | -i | i | i | -i | -1 | -1 | 1 | i | i | -i | -i | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -i | -i | i | i | -1 | -1 | -1 | -i | i | i | -i | linear of order 4 |
ρ14 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | -i | i | i | -i | -i | i | -1 | -1 | 1 | i | i | -i | -i | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | i | -i | i | -i | i | -i | -i | i | -1 | -1 | 1 | -i | -i | i | i | linear of order 4 |
ρ16 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | i | -i | -i | i | -i | -i | i | i | -1 | -1 | -1 | i | -i | -i | i | linear of order 4 |
ρ17 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 1 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 1 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ20 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ21 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | -1 | 1 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 1 | 1 | -1 | i | i | -i | -i | complex lifted from C4×S3 |
ρ22 | 2 | -2 | 0 | 2 | -2 | 0 | 2 | -2i | 2i | 0 | 2i | -2i | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ23 | 2 | -2 | 0 | -2 | 2 | 0 | 2 | 2i | -2i | 0 | 2i | -2i | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ24 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | -2 | 0 | 0 | 0 | -1 | -1 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 1 | 1 | 1 | -i | i | i | -i | complex lifted from C4×S3 |
ρ25 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | -1 | 1 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -i | -i | i | i | complex lifted from C4×S3 |
ρ26 | 2 | -2 | 0 | -2 | 2 | 0 | 2 | -2i | 2i | 0 | -2i | 2i | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ27 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -2 | -2 | -2 | 0 | 0 | 0 | -1 | -1 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 1 | 1 | 1 | i | -i | -i | i | complex lifted from C4×S3 |
ρ28 | 2 | -2 | 0 | 2 | -2 | 0 | 2 | 2i | -2i | 0 | -2i | 2i | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ29 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 4i | -4i | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | -4i | 4i | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 9 22)(2 10 23)(3 11 24)(4 12 17)(5 13 18)(6 14 19)(7 15 20)(8 16 21)
(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)
G:=sub<Sym(24)| (1,9,22)(2,10,23)(3,11,24)(4,12,17)(5,13,18)(6,14,19)(7,15,20)(8,16,21), (9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)>;
G:=Group( (1,9,22)(2,10,23)(3,11,24)(4,12,17)(5,13,18)(6,14,19)(7,15,20)(8,16,21), (9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23) );
G=PermutationGroup([[(1,9,22),(2,10,23),(3,11,24),(4,12,17),(5,13,18),(6,14,19),(7,15,20),(8,16,21)], [(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23)]])
G:=TransitiveGroup(24,104);
S3×M4(2) is a maximal subgroup of
M4(2).19D6 M4(2).21D6 C42⋊3D6 M4(2).25D6 M4(2)⋊26D6 M4(2)⋊28D6 D8⋊4D6 D24⋊C22 C24⋊D6 C3⋊C8⋊20D6 C40⋊D6 D15⋊4M4(2) D15⋊M4(2) D15⋊2M4(2)
S3×M4(2) is a maximal quotient of
C24⋊Q8 C42.182D6 C8⋊9D12 Dic3⋊5M4(2) Dic3.5M4(2) Dic3.M4(2) D6⋊M4(2) D6⋊2M4(2) Dic3⋊M4(2) C42.27D6 C42.200D6 C42.202D6 D6⋊3M4(2) C12⋊M4(2) Dic3⋊4M4(2) D6⋊6M4(2) C24⋊D4 C24⋊21D4 C24⋊D6 C3⋊C8⋊20D6 C40⋊D6 D15⋊4M4(2) D15⋊M4(2) D15⋊2M4(2)
Matrix representation of S3×M4(2) ►in GL4(𝔽5) generated by
0 | 0 | 0 | 2 |
0 | 4 | 2 | 0 |
0 | 2 | 0 | 0 |
2 | 0 | 0 | 4 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 3 | 4 | 0 |
2 | 0 | 0 | 4 |
0 | 3 | 0 | 0 |
1 | 0 | 0 | 0 |
3 | 0 | 0 | 1 |
0 | 1 | 3 | 0 |
1 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(5))| [0,0,0,2,0,4,2,0,0,2,0,0,2,0,0,4],[1,0,0,2,0,1,3,0,0,0,4,0,0,0,0,4],[0,1,3,0,3,0,0,1,0,0,0,3,0,0,1,0],[1,0,0,0,0,4,0,0,0,0,4,0,0,0,0,1] >;
S3×M4(2) in GAP, Magma, Sage, TeX
S_3\times M_4(2)
% in TeX
G:=Group("S3xM4(2)");
// GroupNames label
G:=SmallGroup(96,113);
// by ID
G=gap.SmallGroup(96,113);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,188,50,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^5>;
// generators/relations
Export