Extensions 1→N→G→Q→1 with N=C6 and Q=C2×C8

Direct product G=N×Q with N=C6 and Q=C2×C8
dρLabelID
C22×C2496C2^2xC2496,176

Semidirect products G=N:Q with N=C6 and Q=C2×C8
extensionφ:Q→Aut NdρLabelID
C61(C2×C8) = S3×C2×C8φ: C2×C8/C8C2 ⊆ Aut C648C6:1(C2xC8)96,106
C62(C2×C8) = C22×C3⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C696C6:2(C2xC8)96,127

Non-split extensions G=N.Q with N=C6 and Q=C2×C8
extensionφ:Q→Aut NdρLabelID
C6.1(C2×C8) = S3×C16φ: C2×C8/C8C2 ⊆ Aut C6482C6.1(C2xC8)96,4
C6.2(C2×C8) = D6.C8φ: C2×C8/C8C2 ⊆ Aut C6482C6.2(C2xC8)96,5
C6.3(C2×C8) = C8×Dic3φ: C2×C8/C8C2 ⊆ Aut C696C6.3(C2xC8)96,20
C6.4(C2×C8) = Dic3⋊C8φ: C2×C8/C8C2 ⊆ Aut C696C6.4(C2xC8)96,21
C6.5(C2×C8) = D6⋊C8φ: C2×C8/C8C2 ⊆ Aut C648C6.5(C2xC8)96,27
C6.6(C2×C8) = C4×C3⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C696C6.6(C2xC8)96,9
C6.7(C2×C8) = C12⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C696C6.7(C2xC8)96,11
C6.8(C2×C8) = C2×C3⋊C16φ: C2×C8/C2×C4C2 ⊆ Aut C696C6.8(C2xC8)96,18
C6.9(C2×C8) = C12.C8φ: C2×C8/C2×C4C2 ⊆ Aut C6482C6.9(C2xC8)96,19
C6.10(C2×C8) = C12.55D4φ: C2×C8/C2×C4C2 ⊆ Aut C648C6.10(C2xC8)96,37
C6.11(C2×C8) = C3×C22⋊C8central extension (φ=1)48C6.11(C2xC8)96,48
C6.12(C2×C8) = C3×C4⋊C8central extension (φ=1)96C6.12(C2xC8)96,55
C6.13(C2×C8) = C3×M5(2)central extension (φ=1)482C6.13(C2xC8)96,60

׿
×
𝔽