metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D6⋊C8, C4.19D12, C12.52D4, C6.3M4(2), (C2×C8)⋊1S3, (C2×C24)⋊1C2, C2.5(S3×C8), C6.5(C2×C8), C3⋊1(C22⋊C8), (C2×C4).93D6, C2.1(D6⋊C4), C2.3(C8⋊S3), C4.27(C3⋊D4), C6.6(C22⋊C4), (C22×S3).2C4, C22.11(C4×S3), (C2×Dic3).4C4, (C2×C12).107C22, (C2×C3⋊C8)⋊9C2, (S3×C2×C4).7C2, (C2×C6).12(C2×C4), SmallGroup(96,27)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6⋊C8
G = < a,b,c | a6=b2=c8=1, bab=a-1, ac=ca, cbc-1=a3b >
(1 32 43 11 19 39)(2 25 44 12 20 40)(3 26 45 13 21 33)(4 27 46 14 22 34)(5 28 47 15 23 35)(6 29 48 16 24 36)(7 30 41 9 17 37)(8 31 42 10 18 38)
(1 35)(2 48)(3 37)(4 42)(5 39)(6 44)(7 33)(8 46)(9 45)(10 34)(11 47)(12 36)(13 41)(14 38)(15 43)(16 40)(17 26)(18 22)(19 28)(20 24)(21 30)(23 32)(25 29)(27 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
G:=sub<Sym(48)| (1,32,43,11,19,39)(2,25,44,12,20,40)(3,26,45,13,21,33)(4,27,46,14,22,34)(5,28,47,15,23,35)(6,29,48,16,24,36)(7,30,41,9,17,37)(8,31,42,10,18,38), (1,35)(2,48)(3,37)(4,42)(5,39)(6,44)(7,33)(8,46)(9,45)(10,34)(11,47)(12,36)(13,41)(14,38)(15,43)(16,40)(17,26)(18,22)(19,28)(20,24)(21,30)(23,32)(25,29)(27,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;
G:=Group( (1,32,43,11,19,39)(2,25,44,12,20,40)(3,26,45,13,21,33)(4,27,46,14,22,34)(5,28,47,15,23,35)(6,29,48,16,24,36)(7,30,41,9,17,37)(8,31,42,10,18,38), (1,35)(2,48)(3,37)(4,42)(5,39)(6,44)(7,33)(8,46)(9,45)(10,34)(11,47)(12,36)(13,41)(14,38)(15,43)(16,40)(17,26)(18,22)(19,28)(20,24)(21,30)(23,32)(25,29)(27,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );
G=PermutationGroup([[(1,32,43,11,19,39),(2,25,44,12,20,40),(3,26,45,13,21,33),(4,27,46,14,22,34),(5,28,47,15,23,35),(6,29,48,16,24,36),(7,30,41,9,17,37),(8,31,42,10,18,38)], [(1,35),(2,48),(3,37),(4,42),(5,39),(6,44),(7,33),(8,46),(9,45),(10,34),(11,47),(12,36),(13,41),(14,38),(15,43),(16,40),(17,26),(18,22),(19,28),(20,24),(21,30),(23,32),(25,29),(27,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])
D6⋊C8 is a maximal subgroup of
C42.282D6 C8×D12 C8⋊6D12 C42.243D6 C42.182D6 C8⋊9D12 C42.185D6 S3×C22⋊C8 C3⋊D4⋊C8 D6⋊M4(2) D6⋊C8⋊C2 D6⋊2M4(2) Dic3⋊M4(2) C3⋊C8⋊26D4 D4⋊D12 D6.D8 D6⋊5SD16 D6.SD16 D6⋊C8⋊11C2 D4⋊3D12 D4.D12 C24⋊1C4⋊C2 D6.1SD16 Q8⋊3D12 Q8.11D12 D6⋊Q16 Q8⋊4D12 D6.Q16 D6⋊C8.C2 C8⋊Dic3⋊C2 C42.200D6 D12⋊C8 C42.202D6 D6⋊3M4(2) C12⋊2M4(2) C42.31D6 D6.2SD16 D6.4SD16 C4.Q8⋊S3 C6.(C4○D8) D6.5D8 D6.2Q16 C2.D8⋊S3 C2.D8⋊7S3 C8×C3⋊D4 (C22×C8)⋊7S3 C24⋊33D4 D6⋊6M4(2) C24⋊D4 C24⋊21D4 D6⋊C8⋊40C2 D12⋊D4 Dic6⋊D4 D6⋊6SD16 D6⋊8SD16 D12⋊7D4 Dic6.16D4 D6⋊5Q16 D12.17D4 D18⋊C8 C12.77D12 C12.78D12 C12.60D12 C60.94D4 D30⋊4C8 D30⋊3C8 Dic5.22D12 D30⋊C8
D6⋊C8 is a maximal quotient of
C4.8Dic12 C4.17D24 (C22×S3)⋊C8 (C2×Dic3)⋊C8 D12⋊2C8 Dic6⋊2C8 D6⋊C16 D12.C8 C8.25D12 Dic6.C8 (C2×C24)⋊5C4 D18⋊C8 C12.77D12 C12.78D12 C12.60D12 C60.94D4 D30⋊4C8 D30⋊3C8 Dic5.22D12 D30⋊C8
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 6 | 6 | 2 | 1 | 1 | 1 | 1 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C8 | S3 | D4 | D6 | M4(2) | D12 | C3⋊D4 | C4×S3 | S3×C8 | C8⋊S3 |
kernel | D6⋊C8 | C2×C3⋊C8 | C2×C24 | S3×C2×C4 | C2×Dic3 | C22×S3 | D6 | C2×C8 | C12 | C2×C4 | C6 | C4 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
Matrix representation of D6⋊C8 ►in GL3(𝔽73) generated by
1 | 0 | 0 |
0 | 1 | 1 |
0 | 72 | 0 |
1 | 0 | 0 |
0 | 72 | 72 |
0 | 0 | 1 |
22 | 0 | 0 |
0 | 8 | 16 |
0 | 57 | 65 |
G:=sub<GL(3,GF(73))| [1,0,0,0,1,72,0,1,0],[1,0,0,0,72,0,0,72,1],[22,0,0,0,8,57,0,16,65] >;
D6⋊C8 in GAP, Magma, Sage, TeX
D_6\rtimes C_8
% in TeX
G:=Group("D6:C8");
// GroupNames label
G:=SmallGroup(96,27);
// by ID
G=gap.SmallGroup(96,27);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,121,31,86,2309]);
// Polycyclic
G:=Group<a,b,c|a^6=b^2=c^8=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^3*b>;
// generators/relations
Export