Copied to
clipboard

G = D6⋊C8order 96 = 25·3

The semidirect product of D6 and C8 acting via C8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6⋊C8, C4.19D12, C12.52D4, C6.3M4(2), (C2×C8)⋊1S3, (C2×C24)⋊1C2, C2.5(S3×C8), C6.5(C2×C8), C31(C22⋊C8), (C2×C4).93D6, C2.1(D6⋊C4), C2.3(C8⋊S3), C4.27(C3⋊D4), C6.6(C22⋊C4), (C22×S3).2C4, C22.11(C4×S3), (C2×Dic3).4C4, (C2×C12).107C22, (C2×C3⋊C8)⋊9C2, (S3×C2×C4).7C2, (C2×C6).12(C2×C4), SmallGroup(96,27)

Series: Derived Chief Lower central Upper central

C1C6 — D6⋊C8
C1C3C6C12C2×C12S3×C2×C4 — D6⋊C8
C3C6 — D6⋊C8
C1C2×C4C2×C8

Generators and relations for D6⋊C8
 G = < a,b,c | a6=b2=c8=1, bab=a-1, ac=ca, cbc-1=a3b >

6C2
6C2
3C22
3C22
6C22
6C22
6C4
2S3
2S3
2C8
3C2×C4
3C23
6C8
6C2×C4
6C2×C4
2D6
2Dic3
2D6
3C2×C8
3C22×C4
2C3⋊C8
2C24
2C4×S3
2C4×S3
3C22⋊C8

Smallest permutation representation of D6⋊C8
On 48 points
Generators in S48
(1 32 43 11 19 39)(2 25 44 12 20 40)(3 26 45 13 21 33)(4 27 46 14 22 34)(5 28 47 15 23 35)(6 29 48 16 24 36)(7 30 41 9 17 37)(8 31 42 10 18 38)
(1 35)(2 48)(3 37)(4 42)(5 39)(6 44)(7 33)(8 46)(9 45)(10 34)(11 47)(12 36)(13 41)(14 38)(15 43)(16 40)(17 26)(18 22)(19 28)(20 24)(21 30)(23 32)(25 29)(27 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,32,43,11,19,39)(2,25,44,12,20,40)(3,26,45,13,21,33)(4,27,46,14,22,34)(5,28,47,15,23,35)(6,29,48,16,24,36)(7,30,41,9,17,37)(8,31,42,10,18,38), (1,35)(2,48)(3,37)(4,42)(5,39)(6,44)(7,33)(8,46)(9,45)(10,34)(11,47)(12,36)(13,41)(14,38)(15,43)(16,40)(17,26)(18,22)(19,28)(20,24)(21,30)(23,32)(25,29)(27,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;

G:=Group( (1,32,43,11,19,39)(2,25,44,12,20,40)(3,26,45,13,21,33)(4,27,46,14,22,34)(5,28,47,15,23,35)(6,29,48,16,24,36)(7,30,41,9,17,37)(8,31,42,10,18,38), (1,35)(2,48)(3,37)(4,42)(5,39)(6,44)(7,33)(8,46)(9,45)(10,34)(11,47)(12,36)(13,41)(14,38)(15,43)(16,40)(17,26)(18,22)(19,28)(20,24)(21,30)(23,32)(25,29)(27,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,32,43,11,19,39),(2,25,44,12,20,40),(3,26,45,13,21,33),(4,27,46,14,22,34),(5,28,47,15,23,35),(6,29,48,16,24,36),(7,30,41,9,17,37),(8,31,42,10,18,38)], [(1,35),(2,48),(3,37),(4,42),(5,39),(6,44),(7,33),(8,46),(9,45),(10,34),(11,47),(12,36),(13,41),(14,38),(15,43),(16,40),(17,26),(18,22),(19,28),(20,24),(21,30),(23,32),(25,29),(27,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])

D6⋊C8 is a maximal subgroup of
C42.282D6  C8×D12  C86D12  C42.243D6  C42.182D6  C89D12  C42.185D6  S3×C22⋊C8  C3⋊D4⋊C8  D6⋊M4(2)  D6⋊C8⋊C2  D62M4(2)  Dic3⋊M4(2)  C3⋊C826D4  D4⋊D12  D6.D8  D65SD16  D6.SD16  D6⋊C811C2  D43D12  D4.D12  C241C4⋊C2  D6.1SD16  Q83D12  Q8.11D12  D6⋊Q16  Q84D12  D6.Q16  D6⋊C8.C2  C8⋊Dic3⋊C2  C42.200D6  D12⋊C8  C42.202D6  D63M4(2)  C122M4(2)  C42.31D6  D6.2SD16  D6.4SD16  C4.Q8⋊S3  C6.(C4○D8)  D6.5D8  D6.2Q16  C2.D8⋊S3  C2.D87S3  C8×C3⋊D4  (C22×C8)⋊7S3  C2433D4  D66M4(2)  C24⋊D4  C2421D4  D6⋊C840C2  D12⋊D4  Dic6⋊D4  D66SD16  D68SD16  D127D4  Dic6.16D4  D65Q16  D12.17D4  D18⋊C8  C12.77D12  C12.78D12  C12.60D12  C60.94D4  D304C8  D303C8  Dic5.22D12  D30⋊C8
D6⋊C8 is a maximal quotient of
C4.8Dic12  C4.17D24  (C22×S3)⋊C8  (C2×Dic3)⋊C8  D122C8  Dic62C8  D6⋊C16  D12.C8  C8.25D12  Dic6.C8  (C2×C24)⋊5C4  D18⋊C8  C12.77D12  C12.78D12  C12.60D12  C60.94D4  D304C8  D303C8  Dic5.22D12  D30⋊C8

36 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A6B6C8A8B8C8D8E8F8G8H12A12B12C12D24A···24H
order1222223444444666888888881212121224···24
size11116621111662222222666622222···2

36 irreducible representations

dim1111111222222222
type++++++++
imageC1C2C2C2C4C4C8S3D4D6M4(2)D12C3⋊D4C4×S3S3×C8C8⋊S3
kernelD6⋊C8C2×C3⋊C8C2×C24S3×C2×C4C2×Dic3C22×S3D6C2×C8C12C2×C4C6C4C4C22C2C2
# reps1111228121222244

Matrix representation of D6⋊C8 in GL3(𝔽73) generated by

100
011
0720
,
100
07272
001
,
2200
0816
05765
G:=sub<GL(3,GF(73))| [1,0,0,0,1,72,0,1,0],[1,0,0,0,72,0,0,72,1],[22,0,0,0,8,57,0,16,65] >;

D6⋊C8 in GAP, Magma, Sage, TeX

D_6\rtimes C_8
% in TeX

G:=Group("D6:C8");
// GroupNames label

G:=SmallGroup(96,27);
// by ID

G=gap.SmallGroup(96,27);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,121,31,86,2309]);
// Polycyclic

G:=Group<a,b,c|a^6=b^2=c^8=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^3*b>;
// generators/relations

Export

Subgroup lattice of D6⋊C8 in TeX

׿
×
𝔽