Extensions 1→N→G→Q→1 with N=C2×C6 and Q=Q8

Direct product G=N×Q with N=C2×C6 and Q=Q8
dρLabelID
Q8×C2×C696Q8xC2xC696,222

Semidirect products G=N:Q with N=C2×C6 and Q=Q8
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊Q8 = Dic3.D4φ: Q8/C2C22 ⊆ Aut C2×C648(C2xC6):Q896,85
(C2×C6)⋊2Q8 = C3×C22⋊Q8φ: Q8/C4C2 ⊆ Aut C2×C648(C2xC6):2Q896,169
(C2×C6)⋊3Q8 = C12.48D4φ: Q8/C4C2 ⊆ Aut C2×C648(C2xC6):3Q896,131
(C2×C6)⋊4Q8 = C22×Dic6φ: Q8/C4C2 ⊆ Aut C2×C696(C2xC6):4Q896,205

Non-split extensions G=N.Q with N=C2×C6 and Q=Q8
extensionφ:Q→Aut NdρLabelID
(C2×C6).Q8 = C12.53D4φ: Q8/C2C22 ⊆ Aut C2×C6484(C2xC6).Q896,29
(C2×C6).2Q8 = C3×C8.C4φ: Q8/C4C2 ⊆ Aut C2×C6482(C2xC6).2Q896,58
(C2×C6).3Q8 = C24.C4φ: Q8/C4C2 ⊆ Aut C2×C6482(C2xC6).3Q896,26
(C2×C6).4Q8 = C6.C42φ: Q8/C4C2 ⊆ Aut C2×C696(C2xC6).4Q896,38
(C2×C6).5Q8 = C2×Dic3⋊C4φ: Q8/C4C2 ⊆ Aut C2×C696(C2xC6).5Q896,130
(C2×C6).6Q8 = C2×C4⋊Dic3φ: Q8/C4C2 ⊆ Aut C2×C696(C2xC6).6Q896,132
(C2×C6).7Q8 = C3×C2.C42central extension (φ=1)96(C2xC6).7Q896,45
(C2×C6).8Q8 = C6×C4⋊C4central extension (φ=1)96(C2xC6).8Q896,163

׿
×
𝔽