metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C24.1C4, C12.34D4, C4.18D12, C8.1Dic3, C22.2Dic6, (C2×C8).5S3, C6.7(C4⋊C4), (C2×C6).3Q8, (C2×C24).7C2, (C2×C4).70D6, C3⋊1(C8.C4), C12.35(C2×C4), C4.8(C2×Dic3), C2.5(C4⋊Dic3), C4.Dic3.1C2, (C2×C12).97C22, SmallGroup(96,26)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.C4
G = < a,b,c | a8=1, b6=a4, c2=a4b3, ab=ba, cac-1=a-1, cbc-1=b5 >
Character table of C24.C4
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | i | i | -i | -i | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | -i | i | i | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | -2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -1 | 2 | 2 | -2 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | -√3 | √3 | -√3 | √3 | -√3 | -√3 | √3 | √3 | orthogonal lifted from D12 |
ρ12 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | -1 | 2 | 2 | -2 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | √3 | -√3 | √3 | -√3 | √3 | √3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ15 | 2 | 2 | -2 | -1 | -2 | -2 | 2 | -1 | 1 | 1 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ16 | 2 | 2 | -2 | -1 | -2 | -2 | 2 | -1 | 1 | 1 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ17 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | √3 | √3 | -√3 | -√3 | √3 | -√3 | √3 | -√3 | symplectic lifted from Dic6, Schur index 2 |
ρ18 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -√3 | -√3 | √3 | √3 | -√3 | √3 | -√3 | √3 | symplectic lifted from Dic6, Schur index 2 |
ρ19 | 2 | -2 | 0 | 2 | -2i | 2i | 0 | -2 | 0 | 0 | -√-2 | √-2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | √2 | √-2 | √-2 | √2 | -√2 | -√-2 | -√-2 | -√2 | complex lifted from C8.C4 |
ρ20 | 2 | -2 | 0 | 2 | 2i | -2i | 0 | -2 | 0 | 0 | -√-2 | √-2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | -√2 | √-2 | √-2 | -√2 | √2 | -√-2 | -√-2 | √2 | complex lifted from C8.C4 |
ρ21 | 2 | -2 | 0 | 2 | -2i | 2i | 0 | -2 | 0 | 0 | √-2 | -√-2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | -√2 | -√-2 | -√-2 | -√2 | √2 | √-2 | √-2 | √2 | complex lifted from C8.C4 |
ρ22 | 2 | -2 | 0 | 2 | 2i | -2i | 0 | -2 | 0 | 0 | √-2 | -√-2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | √2 | -√-2 | -√-2 | √2 | -√2 | √-2 | √-2 | -√2 | complex lifted from C8.C4 |
ρ23 | 2 | -2 | 0 | -1 | 2i | -2i | 0 | 1 | -√-3 | √-3 | -√-2 | √-2 | √2 | -√2 | 0 | 0 | 0 | 0 | -√3 | -i | √3 | i | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | complex faithful |
ρ24 | 2 | -2 | 0 | -1 | -2i | 2i | 0 | 1 | -√-3 | √-3 | √-2 | -√-2 | √2 | -√2 | 0 | 0 | 0 | 0 | √3 | i | -√3 | -i | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ32+ζ83+ζ8ζ32 | complex faithful |
ρ25 | 2 | -2 | 0 | -1 | -2i | 2i | 0 | 1 | √-3 | -√-3 | √-2 | -√-2 | √2 | -√2 | 0 | 0 | 0 | 0 | -√3 | i | √3 | -i | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | complex faithful |
ρ26 | 2 | -2 | 0 | -1 | 2i | -2i | 0 | 1 | √-3 | -√-3 | √-2 | -√-2 | -√2 | √2 | 0 | 0 | 0 | 0 | √3 | -i | -√3 | i | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | complex faithful |
ρ27 | 2 | -2 | 0 | -1 | 2i | -2i | 0 | 1 | -√-3 | √-3 | √-2 | -√-2 | -√2 | √2 | 0 | 0 | 0 | 0 | -√3 | -i | √3 | i | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87+ζ85ζ3 | complex faithful |
ρ28 | 2 | -2 | 0 | -1 | -2i | 2i | 0 | 1 | √-3 | -√-3 | -√-2 | √-2 | -√2 | √2 | 0 | 0 | 0 | 0 | -√3 | i | √3 | -i | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ3+ζ87+ζ85ζ3 | complex faithful |
ρ29 | 2 | -2 | 0 | -1 | -2i | 2i | 0 | 1 | -√-3 | √-3 | -√-2 | √-2 | -√2 | √2 | 0 | 0 | 0 | 0 | √3 | i | -√3 | -i | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | complex faithful |
ρ30 | 2 | -2 | 0 | -1 | 2i | -2i | 0 | 1 | √-3 | -√-3 | -√-2 | √-2 | √2 | -√2 | 0 | 0 | 0 | 0 | √3 | -i | -√3 | i | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83+ζ8ζ32 | complex faithful |
(1 13 10 22 7 19 4 16)(2 14 11 23 8 20 5 17)(3 15 12 24 9 21 6 18)(25 37 28 40 31 43 34 46)(26 38 29 41 32 44 35 47)(27 39 30 42 33 45 36 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 31 10 28 7 25 4 34)(2 36 11 33 8 30 5 27)(3 29 12 26 9 35 6 32)(13 40 22 37 19 46 16 43)(14 45 23 42 20 39 17 48)(15 38 24 47 21 44 18 41)
G:=sub<Sym(48)| (1,13,10,22,7,19,4,16)(2,14,11,23,8,20,5,17)(3,15,12,24,9,21,6,18)(25,37,28,40,31,43,34,46)(26,38,29,41,32,44,35,47)(27,39,30,42,33,45,36,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,31,10,28,7,25,4,34)(2,36,11,33,8,30,5,27)(3,29,12,26,9,35,6,32)(13,40,22,37,19,46,16,43)(14,45,23,42,20,39,17,48)(15,38,24,47,21,44,18,41)>;
G:=Group( (1,13,10,22,7,19,4,16)(2,14,11,23,8,20,5,17)(3,15,12,24,9,21,6,18)(25,37,28,40,31,43,34,46)(26,38,29,41,32,44,35,47)(27,39,30,42,33,45,36,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,31,10,28,7,25,4,34)(2,36,11,33,8,30,5,27)(3,29,12,26,9,35,6,32)(13,40,22,37,19,46,16,43)(14,45,23,42,20,39,17,48)(15,38,24,47,21,44,18,41) );
G=PermutationGroup([[(1,13,10,22,7,19,4,16),(2,14,11,23,8,20,5,17),(3,15,12,24,9,21,6,18),(25,37,28,40,31,43,34,46),(26,38,29,41,32,44,35,47),(27,39,30,42,33,45,36,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,31,10,28,7,25,4,34),(2,36,11,33,8,30,5,27),(3,29,12,26,9,35,6,32),(13,40,22,37,19,46,16,43),(14,45,23,42,20,39,17,48),(15,38,24,47,21,44,18,41)]])
C24.C4 is a maximal subgroup of
C8.Dic6 C24.7Q8 C48.C4 D24.1C4 C24.Q8 M5(2)⋊S3 C12.4D8 D8.Dic3 Q16.Dic3 C24.41D4 D24⋊11C4 D24⋊4C4 S3×C8.C4 M4(2).25D6 C23.9Dic6 Q8.8D12 Q8.9D12 Q8.10D12 C24.23D4 C24.44D4 C24.29D4 D8⋊5Dic3 D8⋊4Dic3 C72.C4 C12.82D12 C12.59D12 C60.105D4 C4.18D60 C40.Dic3 C24.1F5
C24.C4 is a maximal quotient of
C24⋊2C8 C24⋊1C8 C12.10C42 C72.C4 C12.82D12 C12.59D12 C60.105D4 C4.18D60 C40.Dic3 C24.1F5
Matrix representation of C24.C4 ►in GL2(𝔽73) generated by
63 | 0 |
28 | 51 |
49 | 0 |
24 | 70 |
72 | 63 |
12 | 1 |
G:=sub<GL(2,GF(73))| [63,28,0,51],[49,24,0,70],[72,12,63,1] >;
C24.C4 in GAP, Magma, Sage, TeX
C_{24}.C_4
% in TeX
G:=Group("C24.C4");
// GroupNames label
G:=SmallGroup(96,26);
// by ID
G=gap.SmallGroup(96,26);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,24,121,55,86,579,69,2309]);
// Polycyclic
G:=Group<a,b,c|a^8=1,b^6=a^4,c^2=a^4*b^3,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^5>;
// generators/relations
Export
Subgroup lattice of C24.C4 in TeX
Character table of C24.C4 in TeX