direct product, cyclic, abelian, monomial
Aliases: C105, also denoted Z105, SmallGroup(105,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C105 |
C1 — C105 |
C1 — C105 |
Generators and relations for C105
G = < a | a105=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)
G:=sub<Sym(105)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)]])
C105 is a maximal subgroup of
D105
105 conjugacy classes
class | 1 | 3A | 3B | 5A | 5B | 5C | 5D | 7A | ··· | 7F | 15A | ··· | 15H | 21A | ··· | 21L | 35A | ··· | 35X | 105A | ··· | 105AV |
order | 1 | 3 | 3 | 5 | 5 | 5 | 5 | 7 | ··· | 7 | 15 | ··· | 15 | 21 | ··· | 21 | 35 | ··· | 35 | 105 | ··· | 105 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
105 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | |||||||
image | C1 | C3 | C5 | C7 | C15 | C21 | C35 | C105 |
kernel | C105 | C35 | C21 | C15 | C7 | C5 | C3 | C1 |
# reps | 1 | 2 | 4 | 6 | 8 | 12 | 24 | 48 |
Matrix representation of C105 ►in GL1(𝔽211) generated by
136 |
G:=sub<GL(1,GF(211))| [136] >;
C105 in GAP, Magma, Sage, TeX
C_{105}
% in TeX
G:=Group("C105");
// GroupNames label
G:=SmallGroup(105,2);
// by ID
G=gap.SmallGroup(105,2);
# by ID
G:=PCGroup([3,-3,-5,-7]);
// Polycyclic
G:=Group<a|a^105=1>;
// generators/relations
Export