direct product, metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary
Aliases: C5×C7⋊C3, C7⋊C15, C35⋊C3, SmallGroup(105,1)
Series: Derived ►Chief ►Lower central ►Upper central
C7 — C5×C7⋊C3 |
Generators and relations for C5×C7⋊C3
G = < a,b,c | a5=b7=c3=1, ab=ba, ac=ca, cbc-1=b4 >
Character table of C5×C7⋊C3
class | 1 | 3A | 3B | 5A | 5B | 5C | 5D | 7A | 7B | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | 35A | 35B | 35C | 35D | 35E | 35F | 35G | 35H | |
size | 1 | 7 | 7 | 1 | 1 | 1 | 1 | 3 | 3 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ3 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | 1 | 1 | ζ54 | ζ52 | ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ53 | ζ53 | ζ53 | ζ5 | ζ54 | ζ54 | ζ5 | ζ52 | ζ52 | linear of order 5 |
ρ5 | 1 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | 1 | 1 | ζ5 | ζ53 | ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ52 | ζ52 | ζ52 | ζ54 | ζ5 | ζ5 | ζ54 | ζ53 | ζ53 | linear of order 5 |
ρ6 | 1 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | 1 | 1 | ζ52 | ζ5 | ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ54 | ζ54 | ζ54 | ζ53 | ζ52 | ζ52 | ζ53 | ζ5 | ζ5 | linear of order 5 |
ρ7 | 1 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | 1 | 1 | ζ53 | ζ54 | ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ5 | ζ5 | ζ5 | ζ52 | ζ53 | ζ53 | ζ52 | ζ54 | ζ54 | linear of order 5 |
ρ8 | 1 | ζ32 | ζ3 | ζ54 | ζ5 | ζ52 | ζ53 | 1 | 1 | ζ32ζ54 | ζ3ζ52 | ζ3ζ53 | ζ3ζ54 | ζ3ζ5 | ζ32ζ5 | ζ32ζ52 | ζ32ζ53 | ζ53 | ζ53 | ζ5 | ζ54 | ζ54 | ζ5 | ζ52 | ζ52 | linear of order 15 |
ρ9 | 1 | ζ3 | ζ32 | ζ5 | ζ54 | ζ53 | ζ52 | 1 | 1 | ζ3ζ5 | ζ32ζ53 | ζ32ζ52 | ζ32ζ5 | ζ32ζ54 | ζ3ζ54 | ζ3ζ53 | ζ3ζ52 | ζ52 | ζ52 | ζ54 | ζ5 | ζ5 | ζ54 | ζ53 | ζ53 | linear of order 15 |
ρ10 | 1 | ζ32 | ζ3 | ζ52 | ζ53 | ζ5 | ζ54 | 1 | 1 | ζ32ζ52 | ζ3ζ5 | ζ3ζ54 | ζ3ζ52 | ζ3ζ53 | ζ32ζ53 | ζ32ζ5 | ζ32ζ54 | ζ54 | ζ54 | ζ53 | ζ52 | ζ52 | ζ53 | ζ5 | ζ5 | linear of order 15 |
ρ11 | 1 | ζ32 | ζ3 | ζ53 | ζ52 | ζ54 | ζ5 | 1 | 1 | ζ32ζ53 | ζ3ζ54 | ζ3ζ5 | ζ3ζ53 | ζ3ζ52 | ζ32ζ52 | ζ32ζ54 | ζ32ζ5 | ζ5 | ζ5 | ζ52 | ζ53 | ζ53 | ζ52 | ζ54 | ζ54 | linear of order 15 |
ρ12 | 1 | ζ3 | ζ32 | ζ53 | ζ52 | ζ54 | ζ5 | 1 | 1 | ζ3ζ53 | ζ32ζ54 | ζ32ζ5 | ζ32ζ53 | ζ32ζ52 | ζ3ζ52 | ζ3ζ54 | ζ3ζ5 | ζ5 | ζ5 | ζ52 | ζ53 | ζ53 | ζ52 | ζ54 | ζ54 | linear of order 15 |
ρ13 | 1 | ζ32 | ζ3 | ζ5 | ζ54 | ζ53 | ζ52 | 1 | 1 | ζ32ζ5 | ζ3ζ53 | ζ3ζ52 | ζ3ζ5 | ζ3ζ54 | ζ32ζ54 | ζ32ζ53 | ζ32ζ52 | ζ52 | ζ52 | ζ54 | ζ5 | ζ5 | ζ54 | ζ53 | ζ53 | linear of order 15 |
ρ14 | 1 | ζ3 | ζ32 | ζ52 | ζ53 | ζ5 | ζ54 | 1 | 1 | ζ3ζ52 | ζ32ζ5 | ζ32ζ54 | ζ32ζ52 | ζ32ζ53 | ζ3ζ53 | ζ3ζ5 | ζ3ζ54 | ζ54 | ζ54 | ζ53 | ζ52 | ζ52 | ζ53 | ζ5 | ζ5 | linear of order 15 |
ρ15 | 1 | ζ3 | ζ32 | ζ54 | ζ5 | ζ52 | ζ53 | 1 | 1 | ζ3ζ54 | ζ32ζ52 | ζ32ζ53 | ζ32ζ54 | ζ32ζ5 | ζ3ζ5 | ζ3ζ52 | ζ3ζ53 | ζ53 | ζ53 | ζ5 | ζ54 | ζ54 | ζ5 | ζ52 | ζ52 | linear of order 15 |
ρ16 | 3 | 0 | 0 | 3 | 3 | 3 | 3 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ17 | 3 | 0 | 0 | 3 | 3 | 3 | 3 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ18 | 3 | 0 | 0 | 3ζ54 | 3ζ5 | 3ζ52 | 3ζ53 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53ζ76+ζ53ζ75+ζ53ζ73 | ζ53ζ74+ζ53ζ72+ζ53ζ7 | ζ5ζ76+ζ5ζ75+ζ5ζ73 | ζ54ζ76+ζ54ζ75+ζ54ζ73 | ζ54ζ74+ζ54ζ72+ζ54ζ7 | ζ5ζ74+ζ5ζ72+ζ5ζ7 | ζ52ζ74+ζ52ζ72+ζ52ζ7 | ζ52ζ76+ζ52ζ75+ζ52ζ73 | complex faithful |
ρ19 | 3 | 0 | 0 | 3ζ54 | 3ζ5 | 3ζ52 | 3ζ53 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53ζ74+ζ53ζ72+ζ53ζ7 | ζ53ζ76+ζ53ζ75+ζ53ζ73 | ζ5ζ74+ζ5ζ72+ζ5ζ7 | ζ54ζ74+ζ54ζ72+ζ54ζ7 | ζ54ζ76+ζ54ζ75+ζ54ζ73 | ζ5ζ76+ζ5ζ75+ζ5ζ73 | ζ52ζ76+ζ52ζ75+ζ52ζ73 | ζ52ζ74+ζ52ζ72+ζ52ζ7 | complex faithful |
ρ20 | 3 | 0 | 0 | 3ζ53 | 3ζ52 | 3ζ54 | 3ζ5 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ5ζ76+ζ5ζ75+ζ5ζ73 | ζ5ζ74+ζ5ζ72+ζ5ζ7 | ζ52ζ76+ζ52ζ75+ζ52ζ73 | ζ53ζ76+ζ53ζ75+ζ53ζ73 | ζ53ζ74+ζ53ζ72+ζ53ζ7 | ζ52ζ74+ζ52ζ72+ζ52ζ7 | ζ54ζ74+ζ54ζ72+ζ54ζ7 | ζ54ζ76+ζ54ζ75+ζ54ζ73 | complex faithful |
ρ21 | 3 | 0 | 0 | 3ζ5 | 3ζ54 | 3ζ53 | 3ζ52 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ52ζ74+ζ52ζ72+ζ52ζ7 | ζ52ζ76+ζ52ζ75+ζ52ζ73 | ζ54ζ74+ζ54ζ72+ζ54ζ7 | ζ5ζ74+ζ5ζ72+ζ5ζ7 | ζ5ζ76+ζ5ζ75+ζ5ζ73 | ζ54ζ76+ζ54ζ75+ζ54ζ73 | ζ53ζ76+ζ53ζ75+ζ53ζ73 | ζ53ζ74+ζ53ζ72+ζ53ζ7 | complex faithful |
ρ22 | 3 | 0 | 0 | 3ζ52 | 3ζ53 | 3ζ5 | 3ζ54 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54ζ76+ζ54ζ75+ζ54ζ73 | ζ54ζ74+ζ54ζ72+ζ54ζ7 | ζ53ζ76+ζ53ζ75+ζ53ζ73 | ζ52ζ76+ζ52ζ75+ζ52ζ73 | ζ52ζ74+ζ52ζ72+ζ52ζ7 | ζ53ζ74+ζ53ζ72+ζ53ζ7 | ζ5ζ74+ζ5ζ72+ζ5ζ7 | ζ5ζ76+ζ5ζ75+ζ5ζ73 | complex faithful |
ρ23 | 3 | 0 | 0 | 3ζ52 | 3ζ53 | 3ζ5 | 3ζ54 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54ζ74+ζ54ζ72+ζ54ζ7 | ζ54ζ76+ζ54ζ75+ζ54ζ73 | ζ53ζ74+ζ53ζ72+ζ53ζ7 | ζ52ζ74+ζ52ζ72+ζ52ζ7 | ζ52ζ76+ζ52ζ75+ζ52ζ73 | ζ53ζ76+ζ53ζ75+ζ53ζ73 | ζ5ζ76+ζ5ζ75+ζ5ζ73 | ζ5ζ74+ζ5ζ72+ζ5ζ7 | complex faithful |
ρ24 | 3 | 0 | 0 | 3ζ53 | 3ζ52 | 3ζ54 | 3ζ5 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ5ζ74+ζ5ζ72+ζ5ζ7 | ζ5ζ76+ζ5ζ75+ζ5ζ73 | ζ52ζ74+ζ52ζ72+ζ52ζ7 | ζ53ζ74+ζ53ζ72+ζ53ζ7 | ζ53ζ76+ζ53ζ75+ζ53ζ73 | ζ52ζ76+ζ52ζ75+ζ52ζ73 | ζ54ζ76+ζ54ζ75+ζ54ζ73 | ζ54ζ74+ζ54ζ72+ζ54ζ7 | complex faithful |
ρ25 | 3 | 0 | 0 | 3ζ5 | 3ζ54 | 3ζ53 | 3ζ52 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ52ζ76+ζ52ζ75+ζ52ζ73 | ζ52ζ74+ζ52ζ72+ζ52ζ7 | ζ54ζ76+ζ54ζ75+ζ54ζ73 | ζ5ζ76+ζ5ζ75+ζ5ζ73 | ζ5ζ74+ζ5ζ72+ζ5ζ7 | ζ54ζ74+ζ54ζ72+ζ54ζ7 | ζ53ζ74+ζ53ζ72+ζ53ζ7 | ζ53ζ76+ζ53ζ75+ζ53ζ73 | complex faithful |
(1 29 22 15 8)(2 30 23 16 9)(3 31 24 17 10)(4 32 25 18 11)(5 33 26 19 12)(6 34 27 20 13)(7 35 28 21 14)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)(30 31 33)(32 35 34)
G:=sub<Sym(35)| (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)>;
G:=Group( (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34) );
G=PermutationGroup([[(1,29,22,15,8),(2,30,23,16,9),(3,31,24,17,10),(4,32,25,18,11),(5,33,26,19,12),(6,34,27,20,13),(7,35,28,21,14)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27),(30,31,33),(32,35,34)]])
C5×C7⋊C3 is a maximal subgroup of
C5⋊F7
Matrix representation of C5×C7⋊C3 ►in GL3(𝔽11) generated by
3 | 0 | 0 |
0 | 3 | 0 |
0 | 0 | 3 |
8 | 5 | 0 |
4 | 7 | 9 |
10 | 7 | 0 |
1 | 5 | 10 |
0 | 3 | 5 |
0 | 4 | 7 |
G:=sub<GL(3,GF(11))| [3,0,0,0,3,0,0,0,3],[8,4,10,5,7,7,0,9,0],[1,0,0,5,3,4,10,5,7] >;
C5×C7⋊C3 in GAP, Magma, Sage, TeX
C_5\times C_7\rtimes C_3
% in TeX
G:=Group("C5xC7:C3");
// GroupNames label
G:=SmallGroup(105,1);
// by ID
G=gap.SmallGroup(105,1);
# by ID
G:=PCGroup([3,-3,-5,-7,272]);
// Polycyclic
G:=Group<a,b,c|a^5=b^7=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations
Export
Subgroup lattice of C5×C7⋊C3 in TeX
Character table of C5×C7⋊C3 in TeX