Copied to
clipboard

G = C5xC20order 100 = 22·52

Abelian group of type [5,20]

direct product, abelian, monomial, 5-elementary

Aliases: C5xC20, SmallGroup(100,8)

Series: Derived Chief Lower central Upper central

C1 — C5xC20
C1C2C10C5xC10 — C5xC20
C1 — C5xC20
C1 — C5xC20

Generators and relations for C5xC20
 G = < a,b | a5=b20=1, ab=ba >

Subgroups: 24, all normal (6 characteristic)
Quotients: C1, C2, C4, C5, C10, C20, C52, C5xC10, C5xC20

Smallest permutation representation of C5xC20
Regular action on 100 points
Generators in S100
(1 88 23 59 68)(2 89 24 60 69)(3 90 25 41 70)(4 91 26 42 71)(5 92 27 43 72)(6 93 28 44 73)(7 94 29 45 74)(8 95 30 46 75)(9 96 31 47 76)(10 97 32 48 77)(11 98 33 49 78)(12 99 34 50 79)(13 100 35 51 80)(14 81 36 52 61)(15 82 37 53 62)(16 83 38 54 63)(17 84 39 55 64)(18 85 40 56 65)(19 86 21 57 66)(20 87 22 58 67)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)

G:=sub<Sym(100)| (1,88,23,59,68)(2,89,24,60,69)(3,90,25,41,70)(4,91,26,42,71)(5,92,27,43,72)(6,93,28,44,73)(7,94,29,45,74)(8,95,30,46,75)(9,96,31,47,76)(10,97,32,48,77)(11,98,33,49,78)(12,99,34,50,79)(13,100,35,51,80)(14,81,36,52,61)(15,82,37,53,62)(16,83,38,54,63)(17,84,39,55,64)(18,85,40,56,65)(19,86,21,57,66)(20,87,22,58,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)>;

G:=Group( (1,88,23,59,68)(2,89,24,60,69)(3,90,25,41,70)(4,91,26,42,71)(5,92,27,43,72)(6,93,28,44,73)(7,94,29,45,74)(8,95,30,46,75)(9,96,31,47,76)(10,97,32,48,77)(11,98,33,49,78)(12,99,34,50,79)(13,100,35,51,80)(14,81,36,52,61)(15,82,37,53,62)(16,83,38,54,63)(17,84,39,55,64)(18,85,40,56,65)(19,86,21,57,66)(20,87,22,58,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100) );

G=PermutationGroup([[(1,88,23,59,68),(2,89,24,60,69),(3,90,25,41,70),(4,91,26,42,71),(5,92,27,43,72),(6,93,28,44,73),(7,94,29,45,74),(8,95,30,46,75),(9,96,31,47,76),(10,97,32,48,77),(11,98,33,49,78),(12,99,34,50,79),(13,100,35,51,80),(14,81,36,52,61),(15,82,37,53,62),(16,83,38,54,63),(17,84,39,55,64),(18,85,40,56,65),(19,86,21,57,66),(20,87,22,58,67)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)]])

C5xC20 is a maximal subgroup of   C52:7C8  C52:4Q8  C20:D5

100 conjugacy classes

class 1  2 4A4B5A···5X10A···10X20A···20AV
order12445···510···1020···20
size11111···11···11···1

100 irreducible representations

dim111111
type++
imageC1C2C4C5C10C20
kernelC5xC20C5xC10C52C20C10C5
# reps112242448

Matrix representation of C5xC20 in GL2(F41) generated by

160
010
,
390
031
G:=sub<GL(2,GF(41))| [16,0,0,10],[39,0,0,31] >;

C5xC20 in GAP, Magma, Sage, TeX

C_5\times C_{20}
% in TeX

G:=Group("C5xC20");
// GroupNames label

G:=SmallGroup(100,8);
// by ID

G=gap.SmallGroup(100,8);
# by ID

G:=PCGroup([4,-2,-5,-5,-2,200]);
// Polycyclic

G:=Group<a,b|a^5=b^20=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C5xC20 in TeX

׿
x
:
Z
F
o
wr
Q
<