A quasisimple group is a perfect group that is a central extension of a simple group. See also almost simple groups.
d | ρ | Label | ID | ||
---|---|---|---|---|---|
A5 | Alternating group on 5 letters; = SL2(𝔽4) = L2(5) = L2(4) = icosahedron/dodecahedron rotations; 1st non-abelian simple | 5 | 3+ | A5 | 60,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
SL2(𝔽5) | Special linear group on 𝔽52; = C2.A5 = 2I = <2,3,5> | 24 | 2- | SL(2,5) | 120,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
GL3(𝔽2) | General linear group on 𝔽23; = Aut(C23) = L3(2) = L2(7); 2nd non-abelian simple | 7 | 3 | GL(3,2) | 168,42 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
SL2(𝔽7) | Special linear group on 𝔽72; = C2.GL3(𝔽2) | 16 | 4 | SL(2,7) | 336,114 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
A6 | Alternating group on 6 letters; = PSL2(𝔽9) = L2(9); 3rd non-abelian simple | 6 | 5+ | A6 | 360,118 |