Copied to
clipboard

G = C2xM5(2):C2order 128 = 27

Direct product of C2 and M5(2):C2

direct product, p-group, metabelian, nilpotent (class 4), monomial

Aliases: C2xM5(2):C2, C23.36SD16, M5(2):15C22, C4.64(C2xD8), C8.96(C2xD4), (C2xD8).14C4, D8.12(C2xC4), (C2xC4).142D8, (C2xC8).123D4, C8.8(C22xC4), (C2xC4).53SD16, C8.10(C22:C4), (C2xM5(2)):17C2, (C2xC8).226C23, C8.C4:9C22, (C22xD8).14C2, (C22xC4).336D4, C4.26(D4:C4), (C2xD8).153C22, C22.16(C2xSD16), (C22xC8).235C22, C22.33(D4:C4), (C2xC8).85(C2xC4), (C2xC4).271(C2xD4), C4.58(C2xC22:C4), (C2xC8.C4):19C2, C2.36(C2xD4:C4), (C2xC4).274(C22:C4), SmallGroup(128,878)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — C2xM5(2):C2
C1C2C4C2xC4C2xC8C22xC8C22xD8 — C2xM5(2):C2
C1C2C4C8 — C2xM5(2):C2
C1C22C22xC4C22xC8 — C2xM5(2):C2
C1C2C2C2C2C4C4C2xC8 — C2xM5(2):C2

Generators and relations for C2xM5(2):C2
 G = < a,b,c,d | a2=b16=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b9, dbd=b3c, cd=dc >

Subgroups: 372 in 128 conjugacy classes, 52 normal (32 characteristic)
C1, C2, C2, C2, C4, C22, C22, C8, C8, C2xC4, D4, C23, C23, C16, C2xC8, C2xC8, M4(2), D8, D8, C22xC4, C2xD4, C24, C8.C4, C8.C4, C2xC16, M5(2), M5(2), C22xC8, C2xM4(2), C2xD8, C2xD8, C22xD4, M5(2):C2, C2xC8.C4, C2xM5(2), C22xD8, C2xM5(2):C2
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, D8, SD16, C22xC4, C2xD4, D4:C4, C2xC22:C4, C2xD8, C2xSD16, M5(2):C2, C2xD4:C4, C2xM5(2):C2

Smallest permutation representation of C2xM5(2):C2
On 32 points
Generators in S32
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 17)(2 26)(3 19)(4 28)(5 21)(6 30)(7 23)(8 32)(9 25)(10 18)(11 27)(12 20)(13 29)(14 22)(15 31)(16 24)
(1 5)(2 32)(4 30)(6 28)(7 15)(8 26)(9 13)(10 24)(12 22)(14 20)(16 18)(17 21)(23 31)(25 29)

G:=sub<Sym(32)| (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,17)(2,26)(3,19)(4,28)(5,21)(6,30)(7,23)(8,32)(9,25)(10,18)(11,27)(12,20)(13,29)(14,22)(15,31)(16,24), (1,5)(2,32)(4,30)(6,28)(7,15)(8,26)(9,13)(10,24)(12,22)(14,20)(16,18)(17,21)(23,31)(25,29)>;

G:=Group( (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,17)(2,26)(3,19)(4,28)(5,21)(6,30)(7,23)(8,32)(9,25)(10,18)(11,27)(12,20)(13,29)(14,22)(15,31)(16,24), (1,5)(2,32)(4,30)(6,28)(7,15)(8,26)(9,13)(10,24)(12,22)(14,20)(16,18)(17,21)(23,31)(25,29) );

G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,17),(2,26),(3,19),(4,28),(5,21),(6,30),(7,23),(8,32),(9,25),(10,18),(11,27),(12,20),(13,29),(14,22),(15,31),(16,24)], [(1,5),(2,32),(4,30),(6,28),(7,15),(8,26),(9,13),(10,24),(12,22),(14,20),(16,18),(17,21),(23,31),(25,29)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D8A8B8C8D8E8F8G8H8I8J16A···16H
order12222222224444888888888816···16
size1111228888222222224488884···4

32 irreducible representations

dim111111222224
type+++++++++
imageC1C2C2C2C2C4D4D4D8SD16SD16M5(2):C2
kernelC2xM5(2):C2M5(2):C2C2xC8.C4C2xM5(2)C22xD8C2xD8C2xC8C22xC4C2xC4C2xC4C23C2
# reps141118314224

Matrix representation of C2xM5(2):C2 in GL6(F17)

1600000
0160000
0016000
0001600
0000160
0000016
,
11140000
3130000
005020
00140161
001314120
0014310
,
100000
010000
001000
000100
00120160
0010016
,
1600000
1210000
0016000
001100
0020143
0014033

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[11,3,0,0,0,0,14,13,0,0,0,0,0,0,5,14,13,14,0,0,0,0,14,3,0,0,2,16,12,1,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,12,1,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,12,0,0,0,0,0,1,0,0,0,0,0,0,16,1,2,14,0,0,0,1,0,0,0,0,0,0,14,3,0,0,0,0,3,3] >;

C2xM5(2):C2 in GAP, Magma, Sage, TeX

C_2\times M_5(2)\rtimes C_2
% in TeX

G:=Group("C2xM5(2):C2");
// GroupNames label

G:=SmallGroup(128,878);
// by ID

G=gap.SmallGroup(128,878);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,1123,1466,136,1411,172,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^16=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^9,d*b*d=b^3*c,c*d=d*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<