Copied to
clipboard

G = M4(2).43D4order 128 = 27

7th non-split extension by M4(2) of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: M4(2).43D4, (C2xD8):5C4, (C2xQ16):5C4, C4.80(C4xD4), C4oD4.24D4, (C2xC8).321D4, (C2xSD16):13C4, C2.14(C8oD8), C4.124C22wrC2, C4.C42:3C2, D4.1(C22:C4), C22.150(C4xD4), Q8.1(C22:C4), C2.14(C8.26D4), C4.187(C4:D4), C22.1(C4:D4), C23.204(C4oD4), (C22xC8).388C22, (C2xC42).276C22, (C22xC4).1363C23, C22.7C42:24C2, C2.15(C23.23D4), (C2xM4(2)).177C22, C22.20(C22.D4), (C2xC4wrC2):13C2, (C2xC8oD4):14C2, (C2xC4oD8).1C2, (C2xC8).108(C2xC4), (C2xD4).72(C2xC4), (C2xC4).995(C2xD4), C4.10(C2xC22:C4), (C2xQ8).63(C2xC4), (C22xC8):C2:22C2, (C2xC4).865(C4oD4), (C2xC4).381(C22xC4), (C2xC4oD4).263C22, SmallGroup(128,608)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — M4(2).43D4
C1C2C22C2xC4C22xC4C2xC4oD4C2xC8oD4 — M4(2).43D4
C1C2C2xC4 — M4(2).43D4
C1C2xC4C22xC8 — M4(2).43D4
C1C2C2C22xC4 — M4(2).43D4

Generators and relations for M4(2).43D4
 G = < a,b,c,d | a8=b2=1, c4=a4, d2=b, bab=a5, cac-1=a-1b, dad-1=a3b, cbc-1=a4b, bd=db, dcd-1=a4bc3 >

Subgroups: 308 in 162 conjugacy classes, 56 normal (46 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C42, C2xC8, C2xC8, M4(2), M4(2), D8, SD16, Q16, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C22:C8, C4wrC2, C2xC42, C22xC8, C22xC8, C2xM4(2), C2xM4(2), C8oD4, C2xD8, C2xSD16, C2xQ16, C4oD8, C2xC4oD4, C22.7C42, C4.C42, (C22xC8):C2, C2xC4wrC2, C2xC8oD4, C2xC4oD8, M4(2).43D4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, C22xC4, C2xD4, C4oD4, C2xC22:C4, C4xD4, C22wrC2, C4:D4, C22.D4, C23.23D4, C8oD8, C8.26D4, M4(2).43D4

Smallest permutation representation of M4(2).43D4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)(26 30)(28 32)
(1 9 27 20 5 13 31 24)(2 16 28 19 6 12 32 23)(3 11 29 22 7 15 25 18)(4 10 30 21 8 14 26 17)
(2 4 6 8)(9 20 13 24)(10 19)(11 22 15 18)(12 21)(14 23)(16 17)(26 28 30 32)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(26,30)(28,32), (1,9,27,20,5,13,31,24)(2,16,28,19,6,12,32,23)(3,11,29,22,7,15,25,18)(4,10,30,21,8,14,26,17), (2,4,6,8)(9,20,13,24)(10,19)(11,22,15,18)(12,21)(14,23)(16,17)(26,28,30,32)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(26,30)(28,32), (1,9,27,20,5,13,31,24)(2,16,28,19,6,12,32,23)(3,11,29,22,7,15,25,18)(4,10,30,21,8,14,26,17), (2,4,6,8)(9,20,13,24)(10,19)(11,22,15,18)(12,21)(14,23)(16,17)(26,28,30,32) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,6),(4,8),(9,13),(11,15),(18,22),(20,24),(26,30),(28,32)], [(1,9,27,20,5,13,31,24),(2,16,28,19,6,12,32,23),(3,11,29,22,7,15,25,18),(4,10,30,21,8,14,26,17)], [(2,4,6,8),(9,20,13,24),(10,19),(11,22,15,18),(12,21),(14,23),(16,17),(26,28,30,32)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G···4L4M8A8B8C8D8E···8N8O8P
order1222222224444444···4488888···888
size1111224481111224···4822224···488

38 irreducible representations

dim11111111112222224
type++++++++++
imageC1C2C2C2C2C2C2C4C4C4D4D4D4C4oD4C4oD4C8oD8C8.26D4
kernelM4(2).43D4C22.7C42C4.C42(C22xC8):C2C2xC4wrC2C2xC8oD4C2xC4oD8C2xD8C2xSD16C2xQ16C2xC8M4(2)C4oD4C2xC4C23C2C2
# reps11112112422242282

Matrix representation of M4(2).43D4 in GL4(F17) generated by

0100
16000
00213
00215
,
1000
0100
0010
00116
,
16000
0100
00138
0064
,
1000
01600
0010
001113
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,2,2,0,0,13,15],[1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,16],[16,0,0,0,0,1,0,0,0,0,13,6,0,0,8,4],[1,0,0,0,0,16,0,0,0,0,1,11,0,0,0,13] >;

M4(2).43D4 in GAP, Magma, Sage, TeX

M_4(2)._{43}D_4
% in TeX

G:=Group("M4(2).43D4");
// GroupNames label

G:=SmallGroup(128,608);
// by ID

G=gap.SmallGroup(128,608);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,1018,521,248,1411,718,172,2028,1027]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=1,c^4=a^4,d^2=b,b*a*b=a^5,c*a*c^-1=a^-1*b,d*a*d^-1=a^3*b,c*b*c^-1=a^4*b,b*d=d*b,d*c*d^-1=a^4*b*c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<