Extensions 1→N→G→Q→1 with N=C2xC4oD8 and Q=C2

Direct product G=NxQ with N=C2xC4oD8 and Q=C2
dρLabelID
C22xC4oD864C2^2xC4oD8128,2309

Semidirect products G=N:Q with N=C2xC4oD8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC4oD8):1C2 = D8:8D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):1C2128,918
(C2xC4oD8):2C2 = C24.103D4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):2C2128,1734
(C2xC4oD8):3C2 = (C2xD4):21D4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):3C2128,1744
(C2xC4oD8):4C2 = (C2xQ8):17D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):4C2128,1745
(C2xC4oD8):5C2 = C42.443D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):5C2128,1767
(C2xC4oD8):6C2 = C42.18C23φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):6C2128,1777
(C2xC4oD8):7C2 = C24.144D4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):7C2128,1782
(C2xC4oD8):8C2 = C42.360D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):8C2128,1879
(C2xC4oD8):9C2 = D8:12D4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):9C2128,2012
(C2xC4oD8):10C2 = SD16:10D4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):10C2128,2014
(C2xC4oD8):11C2 = D8:13D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):11C2128,2015
(C2xC4oD8):12C2 = SD16:11D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):12C2128,2016
(C2xC4oD8):13C2 = Q16:12D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):13C2128,2017
(C2xC4oD8):14C2 = Q16:13D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):14C2128,2019
(C2xC4oD8):15C2 = C2xC4oD16φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):15C2128,2143
(C2xC4oD8):16C2 = C24.110D4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):16C2128,1786
(C2xC4oD8):17C2 = (C2xC8):13D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):17C2128,1792
(C2xC4oD8):18C2 = (C2xC8):14D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):18C2128,1793
(C2xC4oD8):19C2 = M4(2).10C23φ: C2/C1C2 ⊆ Out C2xC4oD8324(C2xC4oD8):19C2128,1799
(C2xC4oD8):20C2 = C42.247D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):20C2128,1882
(C2xC4oD8):21C2 = M4(2):10D4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):21C2128,1886
(C2xC4oD8):22C2 = M4(2):11D4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):22C2128,1887
(C2xC4oD8):23C2 = D8:10D4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):23C2128,1999
(C2xC4oD8):24C2 = SD16:7D4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):24C2128,2000
(C2xC4oD8):25C2 = SD16:8D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):25C2128,2001
(C2xC4oD8):26C2 = Q16:10D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):26C2128,2003
(C2xC4oD8):27C2 = C2xC16:C22φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):27C2128,2144
(C2xC4oD8):28C2 = D16:C22φ: C2/C1C2 ⊆ Out C2xC4oD8324(C2xC4oD8):28C2128,2146
(C2xC4oD8):29C2 = C2xD8:C22φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):29C2128,2312
(C2xC4oD8):30C2 = C2xD4oD8φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):30C2128,2313
(C2xC4oD8):31C2 = C2xD4oSD16φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8):31C2128,2314
(C2xC4oD8):32C2 = C2xQ8oD8φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8):32C2128,2315
(C2xC4oD8):33C2 = C8.C24φ: C2/C1C2 ⊆ Out C2xC4oD8324(C2xC4oD8):33C2128,2316

Non-split extensions G=N.Q with N=C2xC4oD8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC4oD8).1C2 = M4(2).43D4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8).1C2128,608
(C2xC4oD8).2C2 = C42.326D4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8).2C2128,706
(C2xC4oD8).3C2 = C23.24D8φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8).3C2128,870
(C2xC4oD8).4C2 = C2xD8.C4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8).4C2128,874
(C2xC4oD8).5C2 = D8.10D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8).5C2128,921
(C2xC4oD8).6C2 = C42.19C23φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8).6C2128,1778
(C2xC4oD8).7C2 = C42.116D4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8).7C2128,707
(C2xC4oD8).8C2 = M4(2).30D4φ: C2/C1C2 ⊆ Out C2xC4oD8324(C2xC4oD8).8C2128,708
(C2xC4oD8).9C2 = C23.39D8φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8).9C2128,871
(C2xC4oD8).10C2 = C23.20SD16φ: C2/C1C2 ⊆ Out C2xC4oD8324(C2xC4oD8).10C2128,875
(C2xC4oD8).11C2 = C2xD8:2C4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8).11C2128,876
(C2xC4oD8).12C2 = C23.13D8φ: C2/C1C2 ⊆ Out C2xC4oD8324(C2xC4oD8).12C2128,877
(C2xC4oD8).13C2 = C23.21SD16φ: C2/C1C2 ⊆ Out C2xC4oD8324(C2xC4oD8).13C2128,880
(C2xC4oD8).14C2 = C42.383D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8).14C2128,1675
(C2xC4oD8).15C2 = C42.280C23φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8).15C2128,1683
(C2xC4oD8).16C2 = C42.281C23φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8).16C2128,1684
(C2xC4oD8).17C2 = C2xC8.26D4φ: C2/C1C2 ⊆ Out C2xC4oD832(C2xC4oD8).17C2128,1686
(C2xC4oD8).18C2 = M4(2)oD8φ: C2/C1C2 ⊆ Out C2xC4oD8324(C2xC4oD8).18C2128,1689
(C2xC4oD8).19C2 = M4(2).20D4φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8).19C2128,1888
(C2xC4oD8).20C2 = C2xQ32:C2φ: C2/C1C2 ⊆ Out C2xC4oD864(C2xC4oD8).20C2128,2145
(C2xC4oD8).21C2 = C4xC4oD8φ: trivial image64(C2xC4oD8).21C2128,1671
(C2xC4oD8).22C2 = C2xC8oD8φ: trivial image32(C2xC4oD8).22C2128,1685

׿
x
:
Z
F
o
wr
Q
<