Copied to
clipboard

G = D8oD8order 128 = 27

Central product of D8 and D8

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D8oD8, Q16oQ16, D8:14D4, Q16:14D4, SD16:4D4, C42.457C23, M4(2).17C23, 2+ 1+4:4C22, C22.52+ 1+4, C2.76D42, D4oD8:4C2, C8oD8:10C2, C8.13(C2xD4), D4:4D4:7C2, C8:4D4:22C2, (C4xC8):35C22, D4.35(C2xD4), C8oD4:6C22, C4wrC2:14C22, Q8.35(C2xD4), D4.4D4:7C2, (C2xD8):31C22, C8:C22:3C22, (C2xC4).25C24, C4:1D4:14C22, (C2xC8).289C23, C4oD4.14C23, C4oD8.29C22, (C2xD4).11C23, C4.D4:5C22, C4.106(C22xD4), C8.C4:21C22, 2-Sylow(Omega+(4,7)), SmallGroup(128,2024)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — D8oD8
C1C2C4C2xC4C4oD42+ 1+4D4oD8 — D8oD8
C1C2C2xC4 — D8oD8
C1C2C2xC4 — D8oD8
C1C2C2C2xC4 — D8oD8

Generators and relations for D8oD8
 G = < a,b,c,d | a8=b2=d2=1, c4=a4, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=a4c3 >

Subgroups: 572 in 238 conjugacy classes, 92 normal (8 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2xC4, C2xC4, D4, D4, Q8, C23, C42, C2xC8, C2xC8, M4(2), M4(2), D8, D8, SD16, SD16, Q16, C2xD4, C2xD4, C4oD4, C4oD4, C4xC8, C4.D4, C4wrC2, C8.C4, C4:1D4, C8oD4, C2xD8, C2xD8, C4oD8, C4oD8, C8:C22, C8:C22, 2+ 1+4, C8oD8, D4:4D4, D4.4D4, C8:4D4, D4oD8, D8oD8
Quotients: C1, C2, C22, D4, C23, C2xD4, C24, C22xD4, 2+ 1+4, D42, D8oD8

Character table of D8oD8

 class 12A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F4G4H8A8B8C8D8E8F8G8H8I8J
 size 11244448888224444442222448888
ρ111111111111111111111111111111    trivial
ρ21111-1-111-1-11111-111-11-1-1-1-1-1-111-1-1    linear of order 2
ρ3111-1-1-1-11111111-1-1-1-11111111-1-1-1-1    linear of order 2
ρ4111-111-11-1-111111-1-111-1-1-1-1-1-1-1-111    linear of order 2
ρ5111111-1-11-1111-111-11-111-1-1-111-1-1-1    linear of order 2
ρ61111-1-1-1-1-11111-1-11-1-1-1-1-1111-11-111    linear of order 2
ρ7111-1-1-11-11-1111-1-1-11-1-111-1-1-11-1111    linear of order 2
ρ8111-1111-1-11111-11-111-1-1-1111-1-11-1-1    linear of order 2
ρ911111-111-11-111-1-1111-111-1-1-11-1-11-1    linear of order 2
ρ101111-11111-1-111-1111-1-1-1-1111-1-1-1-11    linear of order 2
ρ11111-1-11-11-11-111-11-1-1-1-111-1-1-1111-11    linear of order 2
ρ12111-11-1-111-1-111-1-1-1-11-1-1-1111-1111-1    linear of order 2
ρ1311111-1-1-1-1-1-1111-11-111111111-11-11    linear of order 2
ρ141111-11-1-111-111111-1-11-1-1-1-1-1-1-111-1    linear of order 2
ρ15111-1-111-1-1-1-11111-11-111111111-11-1    linear of order 2
ρ16111-11-11-111-1111-1-1111-1-1-1-1-1-11-1-11    linear of order 2
ρ1722-2-22000000-220020-20-2-200020000    orthogonal lifted from D4
ρ1822-200-2200002-2020-20000-2-2200000    orthogonal lifted from D4
ρ1922-200-2-200002-20202000022-200000    orthogonal lifted from D4
ρ2022-22-2000000-2200-2020-2-200020000    orthogonal lifted from D4
ρ2122-2002200002-20-20-2000022-200000    orthogonal lifted from D4
ρ2222-222000000-2200-20-2022000-20000    orthogonal lifted from D4
ρ2322-2-2-2000000-2200202022000-20000    orthogonal lifted from D4
ρ2422-2002-200002-20-2020000-2-2200000    orthogonal lifted from D4
ρ2544400000000-4-40000000000000000    orthogonal lifted from 2+ 1+4
ρ264-400000000000-200002-2222-2222000000    orthogonal faithful
ρ274-40000000000020000-222-22-2222000000    orthogonal faithful
ρ284-40000000000020000-2-222222-22000000    orthogonal faithful
ρ294-400000000000-20000222-2222-22000000    orthogonal faithful

Permutation representations of D8oD8
On 16 points - transitive group 16T296
Generators in S16
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)
(1 2 3 4 5 6 7 8)(9 16 15 14 13 12 11 10)
(1 10)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 9)

G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9), (1,2,3,4,5,6,7,8)(9,16,15,14,13,12,11,10), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9), (1,2,3,4,5,6,7,8)(9,16,15,14,13,12,11,10), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)], [(1,2,3,4,5,6,7,8),(9,16,15,14,13,12,11,10)], [(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,9)]])

G:=TransitiveGroup(16,296);

Matrix representation of D8oD8 in GL4(F7) generated by

2026
6256
6152
2266
,
5063
0245
5401
3640
,
2245
1242
1145
5210
,
4621
3413
6321
4234
G:=sub<GL(4,GF(7))| [2,6,6,2,0,2,1,2,2,5,5,6,6,6,2,6],[5,0,5,3,0,2,4,6,6,4,0,4,3,5,1,0],[2,1,1,5,2,2,1,2,4,4,4,1,5,2,5,0],[4,3,6,4,6,4,3,2,2,1,2,3,1,3,1,4] >;

D8oD8 in GAP, Magma, Sage, TeX

D_8\circ D_8
% in TeX

G:=Group("D8oD8");
// GroupNames label

G:=SmallGroup(128,2024);
// by ID

G=gap.SmallGroup(128,2024);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,723,346,2804,1411,375,172,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=d^2=1,c^4=a^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=a^4*c^3>;
// generators/relations

Export

Character table of D8oD8 in TeX

׿
x
:
Z
F
o
wr
Q
<