Copied to
clipboard

G = C2xD4oSD16order 128 = 27

Direct product of C2 and D4oSD16

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2xD4oSD16, D8:5C23, C8.4C24, C4.9C25, Q16:5C23, D4.6C24, Q8.6C24, SD16:7C23, M4(2):8C23, 2+ 1+4:9C22, 2- 1+4:7C22, Q8o(C2xSD16), SD16o(C2xQ8), D4o(C2xSD16), SD16o(C2xD4), (C2xC8):7C23, C4oD4.39D4, D4.62(C2xD4), C4oD4:2C23, Q8.64(C2xD4), (C2xD4).358D4, C4oD8:10C22, C8oD4:14C22, (C2xD8):57C22, (C2xQ8).277D4, (C2xQ8):11C23, C2.44(D4xC23), C8:C22:13C22, (C2xC4).615C24, (C22xC8):29C22, (C2xQ16):60C22, C4.126(C22xD4), C23.486(C2xD4), (C2xSD16):63C22, (C22xSD16):10C2, (C2xD4).346C23, C8.C22:13C22, (C22xQ8):48C22, C22.18(C22xD4), (C2xM4(2)):60C22, (C2x2+ 1+4):14C2, (C2x2- 1+4):11C2, (C22xC4).1226C23, (C22xD4).443C22, (C2xQ8)o(C2xSD16), (C2xC8oD4):11C2, (C2xC4oD8):31C2, (C2xC8:C22):35C2, (C2xC4).1114(C2xD4), (C2xC4oD4):57C22, (C2xC8.C22):34C2, SmallGroup(128,2314)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C2xD4oSD16
C1C2C4C2xC4C22xC4C2xC4oD4C2x2+ 1+4 — C2xD4oSD16
C1C2C4 — C2xD4oSD16
C1C22C2xC4oD4 — C2xD4oSD16
C1C2C2C4 — C2xD4oSD16

Generators and relations for C2xD4oSD16
 G = < a,b,c,d,e | a2=b4=c2=e2=1, d4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d3 >

Subgroups: 1172 in 730 conjugacy classes, 428 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C2xC8, C2xC8, M4(2), D8, SD16, Q16, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C2xQ8, C2xQ8, C4oD4, C4oD4, C24, C22xC8, C2xM4(2), C8oD4, C2xD8, C2xSD16, C2xSD16, C2xQ16, C4oD8, C8:C22, C8.C22, C22xD4, C22xD4, C22xQ8, C22xQ8, C2xC4oD4, C2xC4oD4, C2xC4oD4, 2+ 1+4, 2+ 1+4, 2- 1+4, 2- 1+4, C2xC8oD4, C22xSD16, C2xC4oD8, C2xC8:C22, C2xC8.C22, D4oSD16, C2x2+ 1+4, C2x2- 1+4, C2xD4oSD16
Quotients: C1, C2, C22, D4, C23, C2xD4, C24, C22xD4, C25, D4oSD16, D4xC23, C2xD4oSD16

Smallest permutation representation of C2xD4oSD16
On 32 points
Generators in S32
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 25)(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)
(1 7 5 3)(2 8 6 4)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 31 29 27)(26 32 30 28)
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 30)(18 31)(19 32)(20 25)(21 26)(22 27)(23 28)(24 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 19)(2 22)(3 17)(4 20)(5 23)(6 18)(7 21)(8 24)(9 30)(10 25)(11 28)(12 31)(13 26)(14 29)(15 32)(16 27)

G:=sub<Sym(32)| (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,7,5,3)(2,8,6,4)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,31,29,27)(26,32,30,28), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,30)(18,31)(19,32)(20,25)(21,26)(22,27)(23,28)(24,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,19)(2,22)(3,17)(4,20)(5,23)(6,18)(7,21)(8,24)(9,30)(10,25)(11,28)(12,31)(13,26)(14,29)(15,32)(16,27)>;

G:=Group( (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,7,5,3)(2,8,6,4)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,31,29,27)(26,32,30,28), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,30)(18,31)(19,32)(20,25)(21,26)(22,27)(23,28)(24,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,19)(2,22)(3,17)(4,20)(5,23)(6,18)(7,21)(8,24)(9,30)(10,25)(11,28)(12,31)(13,26)(14,29)(15,32)(16,27) );

G=PermutationGroup([[(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,25),(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22)], [(1,7,5,3),(2,8,6,4),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,31,29,27),(26,32,30,28)], [(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,30),(18,31),(19,32),(20,25),(21,26),(22,27),(23,28),(24,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,19),(2,22),(3,17),(4,20),(5,23),(6,18),(7,21),(8,24),(9,30),(10,25),(11,28),(12,31),(13,26),(14,29),(15,32),(16,27)]])

44 conjugacy classes

class 1 2A2B2C2D···2I2J···2Q4A···4H4I···4P8A8B8C8D8E···8J
order12222···22···24···44···488888···8
size11112···24···42···24···422224···4

44 irreducible representations

dim1111111112224
type++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D4D4oSD16
kernelC2xD4oSD16C2xC8oD4C22xSD16C2xC4oD8C2xC8:C22C2xC8.C22D4oSD16C2x2+ 1+4C2x2- 1+4C2xD4C2xQ8C4oD4C2
# reps11333316113144

Matrix representation of C2xD4oSD16 in GL6(F17)

1600000
0160000
0016000
0001600
0000160
0000016
,
100000
010000
0001600
001000
000001
0000160
,
100000
010000
000001
0000160
0001600
001000
,
1140000
1260000
0051200
005500
0000512
000055
,
1600000
1410000
000010
0000016
001000
0001600

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16,0,0,0,0,1,0,0,0],[11,12,0,0,0,0,4,6,0,0,0,0,0,0,5,5,0,0,0,0,12,5,0,0,0,0,0,0,5,5,0,0,0,0,12,5],[16,14,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,16,0,0] >;

C2xD4oSD16 in GAP, Magma, Sage, TeX

C_2\times D_4\circ {\rm SD}_{16}
% in TeX

G:=Group("C2xD4oSD16");
// GroupNames label

G:=SmallGroup(128,2314);
// by ID

G=gap.SmallGroup(128,2314);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,-2,448,477,521,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=e^2=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<