Copied to
clipboard

G = (C2xQ8):16D4order 128 = 27

12nd semidirect product of C2xQ8 and D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4oD4:2D4, (C2xQ8):16D4, Q8:D4:3C2, D4.45(C2xD4), Q8.45(C2xD4), D4:D4:16C2, C4.41C22wrC2, (C2xD4).294D4, C4:C4.12C23, C22:C8:9C22, C4.47(C22xD4), (C2xC4).229C24, (C2xC8).301C23, C2.9(D4oSD16), (C2xD4).30C23, (C2xD8).52C22, C23.233(C2xD4), D4:C4:72C22, C22.29C24:4C2, Q8:C4:15C22, C22.21C22wrC2, (C22xSD16):20C2, C23.38D4:4C2, C4:D4.17C22, (C2x2- 1+4):1C2, (C2xQ8).355C23, (C22xQ8):15C22, C23.24D4:22C2, (C22xC4).277C23, (C22xC8).336C22, C22.489(C22xD4), C42:C2.97C22, (C2xSD16).129C22, (C22xD4).327C22, (C2xM4(2)).41C22, (C2xC8:C22):9C2, (C2xC4).456(C2xD4), (C2xC4oD4):4C22, (C22xC8):C2:5C2, C2.47(C2xC22wrC2), SmallGroup(128,1742)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — (C2xQ8):16D4
C1C2C22C2xC4C22xC4C2xC4oD4C2x2- 1+4 — (C2xQ8):16D4
C1C2C2xC4 — (C2xQ8):16D4
C1C22C2xC4oD4 — (C2xQ8):16D4
C1C2C2C2xC4 — (C2xQ8):16D4

Generators and relations for (C2xQ8):16D4
 G = < a,b,c,d,e | a2=b4=d4=e2=1, c2=b2, ab=ba, ac=ca, dad-1=ab2, ae=ea, cbc-1=b-1, dbd-1=abc, ebe=ab-1c, cd=dc, ece=b2c, ede=d-1 >

Subgroups: 732 in 366 conjugacy classes, 108 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C23, C42, C22:C4, C4:C4, C2xC8, C2xC8, M4(2), D8, SD16, C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C2xQ8, C2xQ8, C4oD4, C4oD4, C24, C22:C8, D4:C4, Q8:C4, C42:C2, C22wrC2, C4:D4, C4.4D4, C4:1D4, C22xC8, C2xM4(2), C2xD8, C2xSD16, C2xSD16, C8:C22, C22xD4, C22xQ8, C22xQ8, C22xQ8, C2xC4oD4, C2xC4oD4, C2xC4oD4, 2- 1+4, (C22xC8):C2, C23.24D4, C23.38D4, Q8:D4, D4:D4, C22.29C24, C22xSD16, C2xC8:C22, C2x2- 1+4, (C2xQ8):16D4
Quotients: C1, C2, C22, D4, C23, C2xD4, C24, C22wrC2, C22xD4, C2xC22wrC2, D4oSD16, (C2xQ8):16D4

Smallest permutation representation of (C2xQ8):16D4
On 32 points
Generators in S32
(1 5)(2 6)(3 7)(4 8)(9 19)(10 20)(11 17)(12 18)(13 22)(14 23)(15 24)(16 21)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 21 3 23)(2 24 4 22)(5 16 7 14)(6 15 8 13)(9 29 11 31)(10 32 12 30)(17 27 19 25)(18 26 20 28)
(1 29 7 25)(2 20 8 10)(3 31 5 27)(4 18 6 12)(9 16 19 23)(11 14 17 21)(13 32 24 28)(15 30 22 26)
(2 13)(4 15)(6 22)(8 24)(9 17)(10 32)(11 19)(12 30)(14 16)(18 26)(20 28)(21 23)(25 29)(27 31)

G:=sub<Sym(32)| (1,5)(2,6)(3,7)(4,8)(9,19)(10,20)(11,17)(12,18)(13,22)(14,23)(15,24)(16,21)(25,29)(26,30)(27,31)(28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,3,23)(2,24,4,22)(5,16,7,14)(6,15,8,13)(9,29,11,31)(10,32,12,30)(17,27,19,25)(18,26,20,28), (1,29,7,25)(2,20,8,10)(3,31,5,27)(4,18,6,12)(9,16,19,23)(11,14,17,21)(13,32,24,28)(15,30,22,26), (2,13)(4,15)(6,22)(8,24)(9,17)(10,32)(11,19)(12,30)(14,16)(18,26)(20,28)(21,23)(25,29)(27,31)>;

G:=Group( (1,5)(2,6)(3,7)(4,8)(9,19)(10,20)(11,17)(12,18)(13,22)(14,23)(15,24)(16,21)(25,29)(26,30)(27,31)(28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,3,23)(2,24,4,22)(5,16,7,14)(6,15,8,13)(9,29,11,31)(10,32,12,30)(17,27,19,25)(18,26,20,28), (1,29,7,25)(2,20,8,10)(3,31,5,27)(4,18,6,12)(9,16,19,23)(11,14,17,21)(13,32,24,28)(15,30,22,26), (2,13)(4,15)(6,22)(8,24)(9,17)(10,32)(11,19)(12,30)(14,16)(18,26)(20,28)(21,23)(25,29)(27,31) );

G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,19),(10,20),(11,17),(12,18),(13,22),(14,23),(15,24),(16,21),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,21,3,23),(2,24,4,22),(5,16,7,14),(6,15,8,13),(9,29,11,31),(10,32,12,30),(17,27,19,25),(18,26,20,28)], [(1,29,7,25),(2,20,8,10),(3,31,5,27),(4,18,6,12),(9,16,19,23),(11,14,17,21),(13,32,24,28),(15,30,22,26)], [(2,13),(4,15),(6,22),(8,24),(9,17),(10,32),(11,19),(12,30),(14,16),(18,26),(20,28),(21,23),(25,29),(27,31)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E···4L4M4N8A8B8C8D8E8F
order12222222222244444···444888888
size11112244448822224···488444488

32 irreducible representations

dim11111111112224
type+++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D4D4D4oSD16
kernel(C2xQ8):16D4(C22xC8):C2C23.24D4C23.38D4Q8:D4D4:D4C22.29C24C22xSD16C2xC8:C22C2x2- 1+4C2xD4C2xQ8C4oD4C2
# reps11114411113544

Matrix representation of (C2xQ8):16D4 in GL6(F17)

100000
010000
001000
000100
0000160
0000016
,
1600000
0160000
00121200
0012500
000055
0000512
,
100000
010000
0001600
001000
000001
0000160
,
010000
1600000
0000160
000001
001000
0001600
,
1600000
010000
001000
0001600
0000160
000001

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,12,12,0,0,0,0,12,5,0,0,0,0,0,0,5,5,0,0,0,0,5,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,16,0,0,0,0,0,0,1,0,0],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1] >;

(C2xQ8):16D4 in GAP, Magma, Sage, TeX

(C_2\times Q_8)\rtimes_{16}D_4
% in TeX

G:=Group("(C2xQ8):16D4");
// GroupNames label

G:=SmallGroup(128,1742);
// by ID

G=gap.SmallGroup(128,1742);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,521,2804,1411,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^4=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,a*e=e*a,c*b*c^-1=b^-1,d*b*d^-1=a*b*c,e*b*e=a*b^-1*c,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<