Copied to
clipboard

G = C2xC12:S3order 144 = 24·32

Direct product of C2 and C12:S3

direct product, metabelian, supersoluble, monomial

Aliases: C2xC12:S3, C6:1D12, C12:6D6, C62.33C22, (C3xC6):5D4, (C2xC12):3S3, (C6xC12):4C2, C3:2(C2xD12), C32:9(C2xD4), (C2xC6).38D6, (C3xC12):6C22, C6.32(C22xS3), (C3xC6).31C23, C4:2(C2xC3:S3), (C2xC4):2(C3:S3), (C22xC3:S3):3C2, (C2xC3:S3):5C22, C2.4(C22xC3:S3), C22.10(C2xC3:S3), SmallGroup(144,170)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C2xC12:S3
C1C3C32C3xC6C2xC3:S3C22xC3:S3 — C2xC12:S3
C32C3xC6 — C2xC12:S3
C1C22C2xC4

Generators and relations for C2xC12:S3
 G = < a,b,c,d | a2=b12=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 642 in 162 conjugacy classes, 59 normal (9 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C2xC4, D4, C23, C32, C12, D6, C2xC6, C2xD4, C3:S3, C3xC6, C3xC6, D12, C2xC12, C22xS3, C3xC12, C2xC3:S3, C2xC3:S3, C62, C2xD12, C12:S3, C6xC12, C22xC3:S3, C2xC12:S3
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:S3, D12, C22xS3, C2xC3:S3, C2xD12, C12:S3, C22xC3:S3, C2xC12:S3

Smallest permutation representation of C2xC12:S3
On 72 points
Generators in S72
(1 68)(2 69)(3 70)(4 71)(5 72)(6 61)(7 62)(8 63)(9 64)(10 65)(11 66)(12 67)(13 35)(14 36)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(21 31)(22 32)(23 33)(24 34)(37 55)(38 56)(39 57)(40 58)(41 59)(42 60)(43 49)(44 50)(45 51)(46 52)(47 53)(48 54)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 49 16)(2 50 17)(3 51 18)(4 52 19)(5 53 20)(6 54 21)(7 55 22)(8 56 23)(9 57 24)(10 58 13)(11 59 14)(12 60 15)(25 67 42)(26 68 43)(27 69 44)(28 70 45)(29 71 46)(30 72 47)(31 61 48)(32 62 37)(33 63 38)(34 64 39)(35 65 40)(36 66 41)
(1 68)(2 67)(3 66)(4 65)(5 64)(6 63)(7 62)(8 61)(9 72)(10 71)(11 70)(12 69)(13 46)(14 45)(15 44)(16 43)(17 42)(18 41)(19 40)(20 39)(21 38)(22 37)(23 48)(24 47)(25 50)(26 49)(27 60)(28 59)(29 58)(30 57)(31 56)(32 55)(33 54)(34 53)(35 52)(36 51)

G:=sub<Sym(72)| (1,68)(2,69)(3,70)(4,71)(5,72)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,35)(14,36)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,33)(24,34)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,49)(44,50)(45,51)(46,52)(47,53)(48,54), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,49,16)(2,50,17)(3,51,18)(4,52,19)(5,53,20)(6,54,21)(7,55,22)(8,56,23)(9,57,24)(10,58,13)(11,59,14)(12,60,15)(25,67,42)(26,68,43)(27,69,44)(28,70,45)(29,71,46)(30,72,47)(31,61,48)(32,62,37)(33,63,38)(34,64,39)(35,65,40)(36,66,41), (1,68)(2,67)(3,66)(4,65)(5,64)(6,63)(7,62)(8,61)(9,72)(10,71)(11,70)(12,69)(13,46)(14,45)(15,44)(16,43)(17,42)(18,41)(19,40)(20,39)(21,38)(22,37)(23,48)(24,47)(25,50)(26,49)(27,60)(28,59)(29,58)(30,57)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)>;

G:=Group( (1,68)(2,69)(3,70)(4,71)(5,72)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,35)(14,36)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,33)(24,34)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,49)(44,50)(45,51)(46,52)(47,53)(48,54), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,49,16)(2,50,17)(3,51,18)(4,52,19)(5,53,20)(6,54,21)(7,55,22)(8,56,23)(9,57,24)(10,58,13)(11,59,14)(12,60,15)(25,67,42)(26,68,43)(27,69,44)(28,70,45)(29,71,46)(30,72,47)(31,61,48)(32,62,37)(33,63,38)(34,64,39)(35,65,40)(36,66,41), (1,68)(2,67)(3,66)(4,65)(5,64)(6,63)(7,62)(8,61)(9,72)(10,71)(11,70)(12,69)(13,46)(14,45)(15,44)(16,43)(17,42)(18,41)(19,40)(20,39)(21,38)(22,37)(23,48)(24,47)(25,50)(26,49)(27,60)(28,59)(29,58)(30,57)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51) );

G=PermutationGroup([[(1,68),(2,69),(3,70),(4,71),(5,72),(6,61),(7,62),(8,63),(9,64),(10,65),(11,66),(12,67),(13,35),(14,36),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(21,31),(22,32),(23,33),(24,34),(37,55),(38,56),(39,57),(40,58),(41,59),(42,60),(43,49),(44,50),(45,51),(46,52),(47,53),(48,54)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,49,16),(2,50,17),(3,51,18),(4,52,19),(5,53,20),(6,54,21),(7,55,22),(8,56,23),(9,57,24),(10,58,13),(11,59,14),(12,60,15),(25,67,42),(26,68,43),(27,69,44),(28,70,45),(29,71,46),(30,72,47),(31,61,48),(32,62,37),(33,63,38),(34,64,39),(35,65,40),(36,66,41)], [(1,68),(2,67),(3,66),(4,65),(5,64),(6,63),(7,62),(8,61),(9,72),(10,71),(11,70),(12,69),(13,46),(14,45),(15,44),(16,43),(17,42),(18,41),(19,40),(20,39),(21,38),(22,37),(23,48),(24,47),(25,50),(26,49),(27,60),(28,59),(29,58),(30,57),(31,56),(32,55),(33,54),(34,53),(35,52),(36,51)]])

C2xC12:S3 is a maximal subgroup of
C12.70D12  C6.17D24  C62.113D4  C62.84D4  C12.19D12  (C6xC12):C4  D12:18D6  C12.28D12  Dic3:5D12  C62.67C23  C12:7D12  Dic3:3D12  C12:D12  D6:5D12  C12:4D12  C122:6C2  C62:12D4  C62.228C23  C62.237C23  C62.238C23  C12:3D12  C24:3D6  C62:19D4  C62.258C23  C62.262C23  C62.73D4  C2xS3xD12  D12:27D6  C2xD4xC3:S3  C62.154C23
C2xC12:S3 is a maximal quotient of
C12:6Dic6  C12:4D12  C122:6C2  C62:12D4  C62.69D4  C12:3D12  C12.31D12  C24.78D6  C24:3D6  C24.5D6  C62:19D4

42 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A4B6A···6L12A···12P
order122222223333446···612···12
size1111181818182222222···22···2

42 irreducible representations

dim111122222
type+++++++++
imageC1C2C2C2S3D4D6D6D12
kernelC2xC12:S3C12:S3C6xC12C22xC3:S3C2xC12C3xC6C12C2xC6C6
# reps1412428416

Matrix representation of C2xC12:S3 in GL5(F13)

120000
01000
00100
00010
00001
,
120000
06300
010300
00063
000103
,
10000
00100
0121200
00010
00001
,
10000
01000
0121200
000012
000120

G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,0,6,10,0,0,0,3,3,0,0,0,0,0,6,10,0,0,0,3,3],[1,0,0,0,0,0,0,12,0,0,0,1,12,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,12,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,12,0] >;

C2xC12:S3 in GAP, Magma, Sage, TeX

C_2\times C_{12}\rtimes S_3
% in TeX

G:=Group("C2xC12:S3");
// GroupNames label

G:=SmallGroup(144,170);
// by ID

G=gap.SmallGroup(144,170);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,218,50,964,3461]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^12=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<