Copied to
clipboard

G = C12.19D12order 288 = 25·32

19th non-split extension by C12 of D12 acting via D12/C6=C22

metabelian, supersoluble, monomial

Aliases: C12.19D12, (C2xC12).90D6, (C3xC12).51D4, C6.27(D6:C4), (C3xM4(2)):9S3, C62.40(C2xC4), C12.58D6:4C2, M4(2):3(C3:S3), (C6xC12).57C22, C4.11(C12:S3), C32:6(C4.D4), C3:2(C12.46D4), C12.116(C3:D4), C4.21(C32:7D4), C2.9(C6.11D12), (C32xM4(2)):13C2, (C2xC6).14(C4xS3), C22.4(C4xC3:S3), (C22xC3:S3).2C4, (C2xC12:S3).10C2, (C3xC6).58(C22:C4), (C2xC4).1(C2xC3:S3), SmallGroup(288,298)

Series: Derived Chief Lower central Upper central

C1C62 — C12.19D12
C1C3C32C3xC6C3xC12C6xC12C2xC12:S3 — C12.19D12
C32C3xC6C62 — C12.19D12
C1C2C2xC4M4(2)

Generators and relations for C12.19D12
 G = < a,b,c | a12=1, b12=a6, c2=a9, bab-1=a7, cac-1=a5, cbc-1=a3b11 >

Subgroups: 748 in 138 conjugacy classes, 47 normal (17 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C2xC4, D4, C23, C32, C12, D6, C2xC6, M4(2), M4(2), C2xD4, C3:S3, C3xC6, C3xC6, C3:C8, C24, D12, C2xC12, C22xS3, C4.D4, C3xC12, C2xC3:S3, C62, C4.Dic3, C3xM4(2), C2xD12, C32:4C8, C3xC24, C12:S3, C6xC12, C22xC3:S3, C12.46D4, C12.58D6, C32xM4(2), C2xC12:S3, C12.19D12
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, D6, C22:C4, C3:S3, C4xS3, D12, C3:D4, C4.D4, C2xC3:S3, D6:C4, C4xC3:S3, C12:S3, C32:7D4, C12.46D4, C6.11D12, C12.19D12

Smallest permutation representation of C12.19D12
On 72 points
Generators in S72
(1 35 56 7 41 62 13 47 68 19 29 50)(2 48 57 20 42 51 14 36 69 8 30 63)(3 37 58 9 43 64 15 25 70 21 31 52)(4 26 59 22 44 53 16 38 71 10 32 65)(5 39 60 11 45 66 17 27 72 23 33 54)(6 28 61 24 46 55 18 40 49 12 34 67)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 12 19 18 13 24 7 6)(2 5 8 23 14 17 20 11)(3 10 21 16 15 22 9 4)(25 71 43 53 37 59 31 65)(26 64 32 58 38 52 44 70)(27 69 45 51 39 57 33 63)(28 62 34 56 40 50 46 68)(29 67 47 49 41 55 35 61)(30 60 36 54 42 72 48 66)

G:=sub<Sym(72)| (1,35,56,7,41,62,13,47,68,19,29,50)(2,48,57,20,42,51,14,36,69,8,30,63)(3,37,58,9,43,64,15,25,70,21,31,52)(4,26,59,22,44,53,16,38,71,10,32,65)(5,39,60,11,45,66,17,27,72,23,33,54)(6,28,61,24,46,55,18,40,49,12,34,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,12,19,18,13,24,7,6)(2,5,8,23,14,17,20,11)(3,10,21,16,15,22,9,4)(25,71,43,53,37,59,31,65)(26,64,32,58,38,52,44,70)(27,69,45,51,39,57,33,63)(28,62,34,56,40,50,46,68)(29,67,47,49,41,55,35,61)(30,60,36,54,42,72,48,66)>;

G:=Group( (1,35,56,7,41,62,13,47,68,19,29,50)(2,48,57,20,42,51,14,36,69,8,30,63)(3,37,58,9,43,64,15,25,70,21,31,52)(4,26,59,22,44,53,16,38,71,10,32,65)(5,39,60,11,45,66,17,27,72,23,33,54)(6,28,61,24,46,55,18,40,49,12,34,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,12,19,18,13,24,7,6)(2,5,8,23,14,17,20,11)(3,10,21,16,15,22,9,4)(25,71,43,53,37,59,31,65)(26,64,32,58,38,52,44,70)(27,69,45,51,39,57,33,63)(28,62,34,56,40,50,46,68)(29,67,47,49,41,55,35,61)(30,60,36,54,42,72,48,66) );

G=PermutationGroup([[(1,35,56,7,41,62,13,47,68,19,29,50),(2,48,57,20,42,51,14,36,69,8,30,63),(3,37,58,9,43,64,15,25,70,21,31,52),(4,26,59,22,44,53,16,38,71,10,32,65),(5,39,60,11,45,66,17,27,72,23,33,54),(6,28,61,24,46,55,18,40,49,12,34,67)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,12,19,18,13,24,7,6),(2,5,8,23,14,17,20,11),(3,10,21,16,15,22,9,4),(25,71,43,53,37,59,31,65),(26,64,32,58,38,52,44,70),(27,69,45,51,39,57,33,63),(28,62,34,56,40,50,46,68),(29,67,47,49,41,55,35,61),(30,60,36,54,42,72,48,66)]])

51 conjugacy classes

class 1 2A2B2C2D3A3B3C3D4A4B6A6B6C6D6E6F6G6H8A8B8C8D12A···12H12I12J12K12L24A···24P
order1222233334466666666888812···121212121224···24
size1123636222222222244444436362···244444···4

51 irreducible representations

dim1111122222244
type++++++++++
imageC1C2C2C2C4S3D4D6D12C3:D4C4xS3C4.D4C12.46D4
kernelC12.19D12C12.58D6C32xM4(2)C2xC12:S3C22xC3:S3C3xM4(2)C3xC12C2xC12C12C12C2xC6C32C3
# reps1111442488818

Matrix representation of C12.19D12 in GL6(F73)

36470000
26360000
00146600
007700
005625597
0022406666
,
26370000
36260000
00314722
002241711
0018444159
0065574033
,
37470000
47360000
001835520
006235221
0064192035
006954912

G:=sub<GL(6,GF(73))| [36,26,0,0,0,0,47,36,0,0,0,0,0,0,14,7,56,22,0,0,66,7,25,40,0,0,0,0,59,66,0,0,0,0,7,66],[26,36,0,0,0,0,37,26,0,0,0,0,0,0,31,22,18,65,0,0,4,41,44,57,0,0,72,71,41,40,0,0,2,1,59,33],[37,47,0,0,0,0,47,36,0,0,0,0,0,0,18,6,64,69,0,0,35,23,19,5,0,0,52,52,20,49,0,0,0,21,35,12] >;

C12.19D12 in GAP, Magma, Sage, TeX

C_{12}._{19}D_{12}
% in TeX

G:=Group("C12.19D12");
// GroupNames label

G:=SmallGroup(288,298);
// by ID

G=gap.SmallGroup(288,298);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,36,422,100,346,2693,9414]);
// Polycyclic

G:=Group<a,b,c|a^12=1,b^12=a^6,c^2=a^9,b*a*b^-1=a^7,c*a*c^-1=a^5,c*b*c^-1=a^3*b^11>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<