Copied to
clipboard

G = C24.82D4order 192 = 26·3

5th non-split extension by C24 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.82D4, C22:2Dic12, C23.31D12, (C2xC6):5Q16, C24:1C4:15C2, (C2xC4).69D12, (C2xC8).309D6, C6.11(C2xQ16), (C2xDic12):9C2, C6.19(C4oD8), (C2xC12).357D4, C12.414(C2xD4), C8.39(C3:D4), C3:4(C8.18D4), (C22xC8).11S3, C2.Dic12:3C2, C2.19(C4oD24), C6.72(C4:D4), (C22xC24).15C2, C2.11(C2xDic12), (C22xC4).448D6, (C22xC6).142D4, C4.113(C4oD12), C12.229(C4oD4), C2.20(C12:7D4), (C2xC12).770C23, (C2xC24).381C22, C12.48D4.5C2, C22.133(C2xD12), C4:Dic3.25C22, (C2xDic6).18C22, (C22xC12).520C22, (C2xC6).160(C2xD4), C4.107(C2xC3:D4), (C2xC4).718(C22xS3), SmallGroup(192,675)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C24.82D4
C1C3C6C2xC6C2xC12C2xDic6C2xDic12 — C24.82D4
C3C6C2xC12 — C24.82D4
C1C22C22xC4C22xC8

Generators and relations for C24.82D4
 G = < a,b,c | a24=b4=1, c2=a12, bab-1=cac-1=a-1, cbc-1=a12b-1 >

Subgroups: 296 in 114 conjugacy classes, 47 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C8, C8, C2xC4, C2xC4, Q8, C23, Dic3, C12, C12, C2xC6, C2xC6, C2xC6, C22:C4, C4:C4, C2xC8, C2xC8, Q16, C22xC4, C2xQ8, C24, C24, Dic6, C2xDic3, C2xC12, C2xC12, C22xC6, Q8:C4, C2.D8, C22:Q8, C22xC8, C2xQ16, Dic12, Dic3:C4, C4:Dic3, C6.D4, C2xC24, C2xC24, C2xDic6, C22xC12, C8.18D4, C2.Dic12, C24:1C4, C2xDic12, C12.48D4, C22xC24, C24.82D4
Quotients: C1, C2, C22, S3, D4, C23, D6, Q16, C2xD4, C4oD4, D12, C3:D4, C22xS3, C4:D4, C2xQ16, C4oD8, Dic12, C2xD12, C4oD12, C2xC3:D4, C8.18D4, C4oD24, C2xDic12, C12:7D4, C24.82D4

Smallest permutation representation of C24.82D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 57 31 86)(2 56 32 85)(3 55 33 84)(4 54 34 83)(5 53 35 82)(6 52 36 81)(7 51 37 80)(8 50 38 79)(9 49 39 78)(10 72 40 77)(11 71 41 76)(12 70 42 75)(13 69 43 74)(14 68 44 73)(15 67 45 96)(16 66 46 95)(17 65 47 94)(18 64 48 93)(19 63 25 92)(20 62 26 91)(21 61 27 90)(22 60 28 89)(23 59 29 88)(24 58 30 87)
(1 74 13 86)(2 73 14 85)(3 96 15 84)(4 95 16 83)(5 94 17 82)(6 93 18 81)(7 92 19 80)(8 91 20 79)(9 90 21 78)(10 89 22 77)(11 88 23 76)(12 87 24 75)(25 51 37 63)(26 50 38 62)(27 49 39 61)(28 72 40 60)(29 71 41 59)(30 70 42 58)(31 69 43 57)(32 68 44 56)(33 67 45 55)(34 66 46 54)(35 65 47 53)(36 64 48 52)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,57,31,86)(2,56,32,85)(3,55,33,84)(4,54,34,83)(5,53,35,82)(6,52,36,81)(7,51,37,80)(8,50,38,79)(9,49,39,78)(10,72,40,77)(11,71,41,76)(12,70,42,75)(13,69,43,74)(14,68,44,73)(15,67,45,96)(16,66,46,95)(17,65,47,94)(18,64,48,93)(19,63,25,92)(20,62,26,91)(21,61,27,90)(22,60,28,89)(23,59,29,88)(24,58,30,87), (1,74,13,86)(2,73,14,85)(3,96,15,84)(4,95,16,83)(5,94,17,82)(6,93,18,81)(7,92,19,80)(8,91,20,79)(9,90,21,78)(10,89,22,77)(11,88,23,76)(12,87,24,75)(25,51,37,63)(26,50,38,62)(27,49,39,61)(28,72,40,60)(29,71,41,59)(30,70,42,58)(31,69,43,57)(32,68,44,56)(33,67,45,55)(34,66,46,54)(35,65,47,53)(36,64,48,52)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,57,31,86)(2,56,32,85)(3,55,33,84)(4,54,34,83)(5,53,35,82)(6,52,36,81)(7,51,37,80)(8,50,38,79)(9,49,39,78)(10,72,40,77)(11,71,41,76)(12,70,42,75)(13,69,43,74)(14,68,44,73)(15,67,45,96)(16,66,46,95)(17,65,47,94)(18,64,48,93)(19,63,25,92)(20,62,26,91)(21,61,27,90)(22,60,28,89)(23,59,29,88)(24,58,30,87), (1,74,13,86)(2,73,14,85)(3,96,15,84)(4,95,16,83)(5,94,17,82)(6,93,18,81)(7,92,19,80)(8,91,20,79)(9,90,21,78)(10,89,22,77)(11,88,23,76)(12,87,24,75)(25,51,37,63)(26,50,38,62)(27,49,39,61)(28,72,40,60)(29,71,41,59)(30,70,42,58)(31,69,43,57)(32,68,44,56)(33,67,45,55)(34,66,46,54)(35,65,47,53)(36,64,48,52) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,57,31,86),(2,56,32,85),(3,55,33,84),(4,54,34,83),(5,53,35,82),(6,52,36,81),(7,51,37,80),(8,50,38,79),(9,49,39,78),(10,72,40,77),(11,71,41,76),(12,70,42,75),(13,69,43,74),(14,68,44,73),(15,67,45,96),(16,66,46,95),(17,65,47,94),(18,64,48,93),(19,63,25,92),(20,62,26,91),(21,61,27,90),(22,60,28,89),(23,59,29,88),(24,58,30,87)], [(1,74,13,86),(2,73,14,85),(3,96,15,84),(4,95,16,83),(5,94,17,82),(6,93,18,81),(7,92,19,80),(8,91,20,79),(9,90,21,78),(10,89,22,77),(11,88,23,76),(12,87,24,75),(25,51,37,63),(26,50,38,62),(27,49,39,61),(28,72,40,60),(29,71,41,59),(30,70,42,58),(31,69,43,57),(32,68,44,56),(33,67,45,55),(34,66,46,54),(35,65,47,53),(36,64,48,52)]])

54 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H6A···6G8A···8H12A···12H24A···24P
order1222223444444446···68···812···1224···24
size11112222222242424242···22···22···22···2

54 irreducible representations

dim111111222222222222222
type++++++++++++-++-
imageC1C2C2C2C2C2S3D4D4D4D6D6C4oD4Q16C3:D4D12D12C4oD8C4oD12Dic12C4oD24
kernelC24.82D4C2.Dic12C24:1C4C2xDic12C12.48D4C22xC24C22xC8C24C2xC12C22xC6C2xC8C22xC4C12C2xC6C8C2xC4C23C6C4C22C2
# reps121121121121244224488

Matrix representation of C24.82D4 in GL4(F73) generated by

21000
0700
00700
00024
,
0100
1000
0001
00720
,
0100
72000
0001
0010
G:=sub<GL(4,GF(73))| [21,0,0,0,0,7,0,0,0,0,70,0,0,0,0,24],[0,1,0,0,1,0,0,0,0,0,0,72,0,0,1,0],[0,72,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

C24.82D4 in GAP, Magma, Sage, TeX

C_{24}._{82}D_4
% in TeX

G:=Group("C24.82D4");
// GroupNames label

G:=SmallGroup(192,675);
// by ID

G=gap.SmallGroup(192,675);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,253,344,254,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=1,c^2=a^12,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^12*b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<